Distribution and ecological risk assessment of typical antibiotics in

surface waters of seven major rivers, China

Zhizhen Yin

The Key Laboratory of pollutant Chemistry and Environmental Treatment, School of Chemistry and environment Sciences, Yili Normal University, Yining 835000, China. E-mail: yinzhizhen123@163.com

Contents of supporting information

Table S1 Summary of the extraction and separation methods for antibiotics insurface waters of seven major rivers in china reported in the literature between2010 and 2020

Table S2 Summary of the aquatic toxicity data and minimum PNEC values of target

 antibiotics

Table S3 Sampling sites of studies on target antibiotics in surface waters of sevenmajor rivers in China

 Table S1
 Summary of the extraction and separation methods for antibiotics in surface waters of seven major rivers in china reported in the literature between 2010

and 2020

Pretreatment method	Extraction	Separation	Detection	Refer
				nce
Water samples (1 L) were filtered through 0.22	NA	BEH C18 column (50 mm × 2.1 mm, 1.7 μm)	LOD: 0.071~0.432 ng/L;	1
μm micropore membranes.		The mobile phase contained 0.01% formic acid in pure	LOQ: 0.21 \sim 1.369 ng/L;	
		water (A) and 100% acetonitrile (B).	Recovery: 81.12~115.69%	
Water samples were filtered through 0.45 μm	Oasis HLB cartridges (500 mg, 6mL)	BEH C18 column (100 mm × 2.1 mm, 1.7 μm)	LOQ: 0.05 \sim 5 ng/L;	2
glass fiber filters and then acidified to pH 3 by	Pretreatment: methanol (6 mL) and ultrapure water (6mL). Rinse:		Recovery: 84.5~107.3%;	
adding HCl. 0.2 g/L Na ₂ EDTA was added into	6 mL ultrapure water. Elution: 6mL ultrapure water and 12 mL		RSD: <5%	
water samples.	methanol.			
Water samples were adjusted to pH 3 using	Oasis HLB cartridges (200mg, 6 m)	BEH C18 column (100 mm × 2.1 mm, 1.7 $\mu m)$.	LOD: 0.02 \sim 5.03 ng/L;	3
H_2SO_4 , added with 5% methanol.	Pretreatment: methanol (10 mL) and Milli-Q water (10mL). Rinse:	The mobile phase contained 0.1% formic acid in Milli-	Recovery: 40 \sim 140%	
	10 mL Milli-Q water. Elution: 12 mL methanol.	Q water (A) and acetonitrile (B).		
Water samples were filtered through 0.7 μm	Elution: 10 mL methanol.	HSS T3 column (100 mm × 2.1 mm, 1.8 μm)	LOD: 0.01 \sim 1.07 ng/L;	4
glass fiber filters and acidified to pH 4 with		The mobile phase contained 0.1% formic acid in	LOQ: 0.03 \sim 1.71 ng/;	
formic acid, followed by the addition of 0.2 g/L		ultrapure water (A) and acetonitrile with 0.1% formic	Recovery: 63.0 \sim 126.8% ;	
Na ₂ EDTA.		acid (B).	RSD: < 5.5%	
Water samples were filtered by glass fiber	Strata-X cartridges (200 mg, 6 mL)	Supelco Discovery HS C18 column (150 mm × 4.6 mm,	LOQ: 0.15 \sim 9.1 ng/L;	5
filter, and then pH was adjusted to 5.	Pretreatment: deionized water (6 mL) and methanol (6 mL).	3 μm)	Recovery: 77 \sim 159%	
	Rinse: 6 mL deionized water. Elution: 3 mL methanol.	The mobile phase contained 0.1% formic acid in		
		ultrapure water (A) and acetonitrile (B)		
Water samples were acidified to pH 4.0 with	Oasis HLB cartridges (200 mg, 6 mL)	HSS T3 column (100 mm × 2.1 mm, 1.8 μm)	LOD: 0.01 \sim 1.18 ng/L;	6
citrate buffer, followed by the addition of 0.2	Pretreatment: methanol (6mL) and ultrapure water (10mL).	Ultrapure water containing 0.1% formic acid (A) and	LOQ: 0.03 \sim 1.68 ng/L;	
g/L Na ₂ EDTA.	Elution: 10 mL methanol.	acetonitrile containing 0.1% formic acid (B) was used	Recovery: 62.1~129.4%	
		as the mobile phase.		

Water sample was filtered through 0.45 μm	Oasis HLB cartridges	Poroshell 120 EC-C18 (2.1 mm × 75 mm, 2.7 μm)	LOD: 0.1~1.6 ng/L;	7
fiber filters and acidified to pH 3 with $H_3 PO_4,$	Pretreatment: methanol (6 mL) and ultrapure water (3 mL) and	The mobile phase contained acetonitrile (A) and 0.2%	Recovery: 74.3~95.8%;	
followed by the addition of 100 g/L Na_2EDTA .	sodium dihydrogen phosphate solution (6 mL). Rinse: 6 mL	formic acid in ultrapure water (B).	RSD: 4.7~9.5%	
	ultrapure. Elution: 3 mL methanol and 6 mL methanol with 2%			
	ammonia			
Water sample (1L) was filtered through 0.45	Pretreatment: methanol (6 mL) and ultrapure water (3 mL) and	ZORBAX Eclipse Plus C18 (150 mm × 2. 1 mm, 3.5	LOD: 0.03 \sim 15 ng/L;	8
μm fiber filters, and then 5 mL of 100g/L	sodium dihydrogen phosphate solution (6 mL). Rinse: 6 mL	μm)	Recovery: 41.3~112. 6%;	
Na_2EDTA was added and the pH was adjusted	ultrapure water. Elution: 6 mL methanol with 2% ammonia.	The mobile phase contained 0.2% formic acid in	RSD: 0.2~12. 7%	
to 4 with 50% H_3PO_4 .		ultrapure water (A) and acetonitrile (B).		
Water samples were filtered through 0.22 μm	Poly-Sery HLB cartridges	C18 (2.1 mm× 50 mm, 1.8 μm)	Recovery: 69 \sim 125%	9
fiber filters and then acidified to pH 3 by	Pretreatment: methanol (10 mL) and ultrapure water (10 mL).	The mobile phase contained 0.2% formic acid (A) and		
adding HCl, followed by the addition of 0.5g	Rinse: 5 mL methanol with 5% ammonia and 10 mL ultrapure	acetonitrile (B).		
Na ₂ EDTA.	water. Elution: 10 mL methanol.			
Water sample (1L) was filtered through 0.45	Oasis HLB cartridge	NA	LOQ: 1 \sim 20 ng/L;	10
μm glass fiber filters and acidified to pH 3.	Rinse: ultrapure water. Elution: methanol.		Recovery: 61 \sim 86%	
Water samples (1L) were filtered through 0.45	HLB cartridges	C18 (4.6 mm × 150 mm, 3.5 μm)	LOQ: 0.1 \sim 1.4 ng/L;	11
μm glass fiber filters and acidified to pH 3 by	Pretreatment: methanol (6 mL) and ultrapure water (6 mL).	The mobile phase contained 0.1% formic acid in	Recovery: 73 \sim 92%;	
adding H_2SO_4 , followed by the addition of 10		ultrapure water (A) and acetonitrile with 0.1% formic	RSD: <20%	
mL of 5% Na₂EDTA.		acid (B).		
Water samples were filtered through 0.7 μm	Oasis HLB (200 mg, 6mL)	Agilent ZORBAX Eclipse Plus C18 (100 mm × 2.1 mm,	Recovery: 31.4 \sim 158.8%;	12
fiber filters and then 0.5g Na ₂ EDTA was added.	Pretreatment: methanol (10 mL) and ultrapure water (10 mL).	1.8 μm)	RSD: <20%	
Samples were acidified to pH 3 by adding	Rinse: 10 mL ultrapure. Elution: 10 mL methanol.	The mobile phase contained 0.2% formic acid and 2		
4mol/L HCl.		mmol/L ammonium acetate (A) and acetonitrile (B).		

Water samples (1L) were filtered through 0.7	HLB (1000 mg)	Agilent ZORBAX Eclipse Plus C18 (100 mm × 2. 1	LOD: 0.4 \sim 10 ng/L;	13
μm fiber filters and then acidified to pH 3 by	Elution: 10 mL methanol.	mm, 1. 8 μm)	Recovery: 61.4 \sim 131.5%	
adding $\rm H_2SO_4$, followed by the addition of 5%		The mobile phase contained 0.1% formic acid and 5	RSD: <20%	
methanol.		mmol/L ammonium acetate (A) and acetonitrile (B).		
The pH values of the water samples were	Oasis HLB (500 mg, 6 mL)	XDB-C18 column (2.1 mm × 50 mm, 1.8 μm)	LOQ: 0.077 \sim 5.3 ng/L;	14
adjusted to 3 by adding H_2SO_4 and then	Pretreatment: methanol (10 mL) and ultra-pure water (10 mL).	The mobile phase contained acetonitrile (A) and 5mM	Recovery: 66 \sim 158%;	
filtered through 0.7 μm fiber filters, followed	Rinse: 10 mL Milli-Q water. Elution: 12 mL methanol.	oxalic acid (B).	RSD: 1~10%	
by the addition of 1 g Na ₂ EDTA.				
Water samples were filtered through 0.7 μm	HLB (500 mg, 6 mL)	Agilent ZORBAX C18 (2.1 mm × 150 mm, 5 μ m)	LOQ: 0.22 \sim 9.96ng/L;	15
fiber filters by the addition of 10 mL of 5%	Pretreatment: methanol (6 mL) and Milli-Q water (6 mL). Rinse:	The mobile phase contained acetonitrile (A) and 0.2%	Recovery: 55.3~108%;	
$Na_2EDTA.$ The pH value was adjusted to 3	10 mL Milli-Q water. Elution: 6 mL methanol.	formic acid (B).	RSD: <14%	
using formic acid.				
Water samples were filtered through 0.7 μm	HLB (500 mg, 6 mL)	ZORBAX Eclipse Plus C18 (2.1 mm \times 50 mm, 1.8 $\mu\text{m})$	LOD: 0.004 \sim 0.6 ng/L;	16
glass fiber filters and then acidified pH to 3 by	Pretreatment: methanol (10 mL) Milli-Q water (10 mL). Rinse:	and ZORBAX SB C18 (2.1 mm × 100 mm, 1.8 $\mu m)$	Recovery: 70 \sim 120%	
adding $H_2SO_4,$ followed by the addition of 0.5 g $$	Milli-Q water (10 mL). Elution: 10 mL methanol.	The mobile phase contained water (A) and		
Na ₂ EDTA.		acetonitrile (B).		
NA	HLB (200mg, 6mL)	XTerra MS C18 (2.1 mm × 100 mm, 3.5 mm)	MDL: 0.01 \sim 0.25 ng /L;	17
	Pretreatment: methanol (5 mL) and ultrapure water (2 mL).		Recovery: 57.4 \sim 138%	
	Rinse: 12 mL ultrapure water. Elution: 6 mL methanol.			
Water samples were filtered through 0.45 μm	Oasis HLB (500 mg, 6mL)	Intersil ODS-3 (2.1 mm × 250 mm, 5 μm)	Recovery: 58 \sim 91%;	18
fiber filters, and adjusted to pH 5 with citrate	Pretreatment: methanol (5 mL) and pure water (5 mL). Rinse: 5	The mobile phase contained acetonitrile (A) and	RSD: 0.5~2.5%	
buffer. 0.2 g Na ₂ EDTA was added into samples.	mL deionized sterile water. Elution: 6 mL methanol.	purified water with 0.3% formic acid (B).		
NA	NA	NA	LOD: 0.01 \sim 8 ng/L;	19
			LOQ: 0.1 \sim 20 ng/L;	
			Recovery: 53.79 \sim 138%;	

Na ₂ EDTA was added in to samples and then	Oasis HLB and Oasis MAX	The mobile phase contained methanol (A) and	NA	20
filtered through 0.7 μm glass fiber.	Pretreatment: ultrapure water. Elution: methanol.	methanol with 1% formic acid (B).		
Water sample was filtered through 0.45 μm	Qasis HLB	Eclipse Plus C18 (3.0 mm × 100 mm, 1.8 μm).	LOD: 0.4 \sim 1.9 ng/L	21
fiber filters and then acidified to pH 2.5 by	Pretreatment: methanol (5 mL) and ultrapure water (5 mL).	The mobile phase contained 0.1% formic acid (A) and	Recovery: 64.5%~132%	
adding HCl, followed by the addition of 0.2 g	Rinse: ultrapure water (5 mL). Elution: methanol (6mL).	acetonitrile with 0.1% formic acid (B).		
Na ₂ EDTA.				
Water samples were acidified to pH 3 with	HLB (500mg, 6mL)	RRHD Zorbax Stable Bond-C18 (2.1 mm × 100mm, 1.8	LOD: 0.0015 \sim 1.6 ng/L;	22
$H_2SO_4\text{,}$ followed by the addition of 0.5%	Pretreatment: methanol (20 mL) ultrapure water (6 mL). Rinse:	μm)	Recovery: 51 \sim 101%	
methanol and 0.5 g Na ₂ EDTA. Water samples	methanol and 10 mL ultrapure water. Elution: 12 mL methanol.	The mobile phase contained 0.2% formic acid in		
were filtered through glass fiber filters finally.		ultrapure water (A) and methanol (B).		
Water sample (1 L) was filtered through 0.45	C18	C18 (4.6 mm × 250mm, 5 μm)	Recovery: 91.4 \sim 98.6%;	23
μm fiber filters and acidified to pH 4 with	Pretreatment: methanol (12 mL) and ultrapure water (12 mL).	The mobile phase contained 0.2% formic acid (A) and	RSD: 3.3~9.6%	
diluted HCl, followed by the addition of 0.5g/L	Rinse: ultrapure water (5 mL). Elution: methanol (6 mL).	acetonitrile (B).		
Na ₂ EDTA.				
Water sample (400 mL) was filtered through	Oasis HLB	BEH C18 (50 mm × 2.1 mm, 1.7 μm).	LOD: 2.5 \sim 20.36 ng/L	24
0.45 μm fiber filters and then acidified to pH	Pretreatment: methanol (10 mL) and ultra-pure water (10 mL).	The mobile phase contained methanol with 0.1%		
$3{\sim}4$ by adding $3\%{\sim}5\%$ HCl.	Rinse: ultrapure water (5 mL). Elution: methanol (10mL).	formic acid (A) and water (B) .		
Water sample (500mL) was filtered through	Oasis HLB	Dionex C18 (2.1 mm × 150 mm, 3 μm)	MQL: 0.3 \sim 3.3ng/L;	25
$0.45 \ \mu m$ fiber filters and then acidified to pH 4	Pretreatment: methanol (6 mL) and ultra-pure water (6 mL).	The mobile phase contained methanol (A) and 0.1%	Recovery: 66.2~109.2%;	
by adding 1mol/L HCl, followed by the	Rinse: ultrapure water (6 mL). Elution: methanol (6mL).	formic acid (B).	RSD: 4.1%~15.3%	
addition of 0.2 g Na_2 EDTA.				
Water sample (1L) was filtered through two	Oasis HLB	BEHC18 (2.1 mm × 50 mm, 1.7 um)	LOD: 0.01 \sim 0.95 ng/L;	26
fiber filters: one at 0.8 μ m and the one at 0.22	Pretreatment: methanol (5 mL) and ultrapure water (5 mL).	The mobile phase contained acetonitrile (A) and	Recovery: 72.1~104.6%;	
μ m and then 0.5 g of Na ₂ EDTA was added. The	Rinse: 10 mL ultrapure water containing 5% methanol. Elution:	0.05% formic acid in ultrapure water (B).	RSD<10%	
pH was adjusted to 4 using 1mol/L HCl	10 mL methanol containing 1% formic acid.			
	-			

Water samples were acidified to pH 3.	HLB (500 mg, 6mL)	RP18 (150 mm × 2.1 mm, 3.5 μm).	LOD: 0.003 \sim 0.016 ng/L;	27
		The mobile phase contained formic acid (A) and	Recovery:71 \sim 105%	
		acetonitrile (B).	RSD: 2.7~12.9%	
Water sample (400mL) was filtered through	HLB (500mg, 6mL)	XBridge C18(150 mm × 2.1 mm,5 μm)	LOD:0.05 \sim 0.32 ng/L	28
0.45 μm fiber filters and 2mL of 100g/L	Pretreatment: methanol (6 mL) and ultrapure water (3 mL) and	The mobile phase contained acetonitrile (A) and	Recovery: 69.5~122.6%	
Na ₂ EDTA [®] was added. The pH was adjusted to	Sodium dihydrogen phosphate solution (6mL). Rinse: ultrapure	methanol with 1% formic acid (B).	RSD: 1.43~9.75%	
3 with H_3PO_4 .	water (6 mL). Elution: methanol (3 mL) and methanol with 2%			
	ammonia (3 mL).			
Water samples were filtered through 0.45 μm	Oasis HLB (500 mg, 6 mL)	Agilent Zorbax Eclipse XDB-C18 (4.6 mm × 150 mm, 5	LOD: 0.04 \sim 1.1 ng/L;	
glass fiber filters and then acidified to pH 3 by	Pretreatment: methanol (5 mL) and ultrapure water (5mL). Rinse:	μm)	LOQ: 0.1 \sim 3 ng/L;	
adding HCl, followed by the addition of 1.2 g	15 mL ultrapure water. Elution: 10 mL methanol containing 5%	The mobile phase contained acetonitrile (A) and 0.1%	Recovery: 57.8 \sim 133.9%	
Na ₂ EDTA.	ammonium hydroxide.	formic acid (B).		
Water samples were filtered through 0.45 μm	Oasis HLB (200 mg, 6mL)	Xbridge C18 (150 mm × 2.1 mm, 3.5 μm)	LOQ: 0.1 \sim 0.5 ng/L;	29
fiber filters and acidified to pH 3 with 0.1	Pretreatment: methanol (6 mL) and ultrapure water (6 mL).	The mobile phase contained acetonitrile (A) and 0.1 $\%$	Recovery: 60.4 \sim 99.6 %;	
mol/L HCl, followed by the addition of 0.2 g	Rinse: 10 mL ultrapure water. Elution: 6 mL methanol.	formic acid (B).	RSD: 0.1~21.7%	
Na ₂ EDTA				
Water samples were filtered through 0.45 μm	HLB (500 mg, 6 mL)	Atlantis [®] T3 (150 mm × 2.1 mm, 3 μm)	LOD: 0.18-0.52 ng/L;	30
glass fiber filters and then 0.4 g Na_2EDTA was	Pretreatment: methanol (2 mL) and 0.1% formic acid in ultrapure	The mobile phase contained 0.2% formic acid in	Recovery: 79.91 \sim 91.31%	
added into water samples. The pH value was	water (2 mL). Rinse: 2 mL ultrapure water. Elution: 10 mL	ultrapure water (A) and methanol (B).		
adjusted to 3 by adding H_2SO_4 and NaOH.	ultrapure water.			
NA	NA	Agilent Zorbax Eclipse XDB-C18 (4.6 mm × 150 mm, 5	Recovery:98.7~102.5%	31
		μm)		

NA, Not available

Compound	Taxonomic group		NOEC (mg/L)	L(E)C ₅₀ (mg/L)	AF	Lowest PNEC (ng/L)	Reference
SMZ	Bacteria	V. fischeri		344.7	1000		3
	Algae	P. subcapitata	0.001		100	10000	3
	Invertebrate	D. magna		158.8	1000		3
	Fish	O. latipes		>100	1000		3
SDZ	Algae	S. capricornutum		2.19	1000		3
	Algae	C. vulgaris.		1.226	1000	1226	3
SMX	lgae	-		0.52	1000		3
	Algae	C. vulgaris.		1.57	1000		3
	Algae	S. capricornutum	0.614		100		3
	Algae	P. subcapitata	<0.0005		100		3
	Algae	S. leopoliensis		0.027	1000	27	3
	Rotifers	·		9.63	1000		3
	Crustaceans	C.dubia		0.21	1000		3
	Bacteria	V. fischeri		78.1	1000		3
	Invertebrate	D. magna		177.3	1000		3
	Fish	O. latipes		562.5	1000		3
	Cnidarian	H. attenuata	5		100		3
ТМР	Algae	S. capricornutum		130	1000		3
	Algae	R. salina		16	1000	16000	3
	Algae	S. capricornutum	25.5		100		3
	Algae	P. subcapitata		40	1000		3
	Cnidarian	H. attenuata	>100		100		3
	Invertebrate	D. magna			1000		3
	Fish	B. Rerio			1000		3
NOR	Bacteria	Vibrio fischeri	0.01038		100	103.8	3
	Algal	S. capricornutum	4.01		100		3
	Algae	P. subcapitata		18	1000		3
OFX	Bacteria	Vibrio fischeri	0.00113		100	11.3	3
	Algae	2		1.44	1000		3
	Algae	S. leopoliensis		0.016	1000		3
	Algae	M. aeruginosa		0.021	1000		3
	Rotifers	5		0.53	1000		3

Table S2 Summary of the aquatic toxicity data and lowest PNEC values of target antibiotics

	Crustaceans			3.13	1000		3
CIP	Algae	P. subcapitata		6.7	1000		3
	Algae	M. aeruginosa		0.017	1000		3
	Algae	M. aeruginosa		0.005	1000	5	32
	Algae	Pseudokirchneriella	0.5		100		33
ENR	Bacteria	Vibrio fischeri	0.00288		100	28.8	3
	Algae	M. aeruginosa		0.049	1000		3
	Invertebrate	D. magna			1000		3
	Fish	O. mykiss			1000		3
ОТС	Algae			0.17	1000	170	3
	Algae	S. capricornutum	0.342		100		3
	Rotifers			1.87	1000		3
	Crustaceans	C.dubia		0.18	1000		3
	Cnidarian	H. attenuata	50		100		3
тс	Algae	M. aeruginosa		0.09	1000		3
		M. aeruginosa		0.05	1000	50	29
	Algae	S. capricornutum		2.2	1000		3
	Algae	P. subcapitata	0.0005		100		3
СТС	Algae	M. aeruginosa		0.05	1000		3
	Algae	S. capricornutum		3.1	1000		3
	Algae	P. subcapitata	0.0005		100	5	3
	Invertebrate	D. magna		>400	1000		3
ETM-H ₂ O	Algae	P.subcapitata		0.020	1000	20	3
	Rotifers			0.94	1000		3
	Crustaceans	C.dubia		0.22	1000		3
ROX	Algae	P. subcapitata		0.047	1000	47	3
	Alage	P.subcapitata	0.01		100		35

Surface	Sampling	Sampling sites	Survey period	refer
water	sites			ence
Yangtze	S1-S2	Lower Yangtze River (Jiangsu section)	11/2018	1
River	\$3-\$10	Yangtze River estuary (Datong, Xuliujing and Wusongkou)	6	4
	S11-S17	Yangtze Estuary(Xupu, Daxingang, Yinyang, Bailonggang, Luchao, Wusongkou, and Liuhekou)	7/2011,10/2011	6
	S18-S19	Nanjing reach of the Yangtze River	8/2018	8
	S20-S21	Middle and lower reaches of the Yangtze River	7/2016	3
	S22	Nanjing reach of the Yangtze River	4/2017	7
Yellow	S23	Yellow river mainstream and tributaries (Luo River, Yi River, Xinmang River, Qing River, Sishui River and Jindi River)	7-10/2006	10
River	S24-S27	The intertidal zones of the Yellow River Delta	4/2014, 9/2014	11
Huai	S28-S29	Shangdong reach of the Huai River	11/2016	21
River	S30-S31	Huai River tributary (Weihe River)	June	20
Songhu	S32-S33	Harbin reach of Songhua River	NA	24
a River	S34-S37	Middle part of the Songhua River; sample sites included 8 mainstreams and 11 tributaries	1/2016,5/2016,7/2016,10/2016	26
	S38-S49	Jilin section of Songhua River and Songhua River tributary $($ Huifa River, Yinma River and Yitong River $)$	4/2018,7/2018/2018,10/2018,4/20 19,7/2019,10/2019	25
	S50	Harbin reach of Songhua River	March, June, September, December	23
Liao	S51-S52	Liao River Upstream (Dahuofang reservoir, guangyinge reservori) and Liao River downstream (Bohai Sea, Liaodong Bay)	26/10/2011-30/10/2011	27
River	S53-S54	mainstream and tributaries of Liao River(Daliao River, Hun River and Taizi River)		28
	S55-S56	Tributary, upstream, in urban sections and downstream in the Liao River Basin	5/2012	29
	S57-S60	Mainstream and estuary of Liao River	5/2015,10,2015 october	32
	S61-S62	Upper river of the Liao River in Jilin Province(Dongliao River, Tiaozi River, and Zhaosutai River)	7/2015,11/2015	30
	S63-S64	Tributary of Liao River (Shenfu section of Hun River)	2/7/2018	31

Table S3 Sampling sites of studies on target antibiotics in surface waters of seven major rivers in China

	S65-S68	Three Pearl River tributaries (Liuxi River, Zhujiang River and Shijing River)	NA	14
Pearl	S69-S72	Guangzhou Section of Pearl River	12/2015,4/2016	12
River	S73-S74	Part of Pearl River	NA	13
	S75-S78	Pearl River Estuary (Shiziyang channel)	1/2011, 8/2010	15
	S79-S80	Pearl River estuary (rivers and coastal areas of Zhuhai City)	NA	16
Hai	S81-S82	Tributary rivers of Hai River (Daqing River, Beiyun River, Miyun Reservoir, Jiyun River, Chaobai River, Zhangwei River	8/2007-11/2015	19
River		and Baiyangdian Lake)		
	S83-S86	mainstream and tributaries of Hai River Basin	8/2009,12/2009, 8/2010	18
	S87-S88	Hai River mainstream and tributaries(Dagu Drainage River, Chentaizi Drainage River, Duliujian River)	9/2010	17

References

- 1 G. D. Zhang, S. Y. Lu, Y. Q. Wang, X. H. Liu, Y. Liu, J. M. Xu, T. T. Zhang, Z. Wang and Y. Yang, Occurrence of antibiotics and antibiotic resistance genes and their correlations in lower Yangtze River, China, *Environ. Pollut.*, 2020, 257, 113365.
- 2 Z. Y. Wang, Q. W. Chen, J. Y. Zhang, J. W. Dong, H. L. Yan, C. Chen and R. R. Feng, Characterization and source identification of tetracycline antibiotics in the drinking water sources of the lower Yangtze River, *J. Environ. Manage.*, 2019, 244, 13-22.
- 3 L. J. Zhou, J. Li, Y. D. Zhang, L. Y. Kong, M. Jin, X. D. Yang and Q. L. L. Wu, Trends in the occurrence and risk assessment of antibiotics in shallow lakes in the lower-middle reaches of the Yangtze River basin, China, *Ecotoxicol. Environ. Saf.*, 2019, 183, 109511.1-109511.11.
- 4 H. Zhao, Z. Cao, X. Liu, Y. Zhan, J. Zhang, X. Xiao, Y. Yang, J. L. Zhou and J. Xu, Seasonal variation, flux estimation, and source analysis of dissolved emerging organic contaminants in the Yangtze Estuary, China, *Mar. Pollut. Bull.*, 2017, 125, 208-215.
- 5 C. X. Wu, X. L. Huang, J. D. Witter, A. L. Spongberg, K. X. Wang, D. Wang and J. T. Liu, Occurrence of pharmaceuticals and personal care products and associated environmental risks in the central and lower Yangtze river, China, *Ecotoxicol. Environ. Saf.*, 2014, 106, 19-26.

6 C. X. Yan, Y. Yang, J. I. Zhou, M. Liu, M. H. Nie, H. Shi and L. J. Gu, Antibiotics in the surface water of the Yangtze Estuary: Occurrence, distribution and risk assessment, *Environ. Pollut.*, 2013, 175, 22-29.

7 N. Tang, S. H. Zhang, M. H. Chen, N. H. Song, H. Z. Xu and Q. Zhang, Contamination level and risk assessment of 12 sulfonamides in surface water of Nanjing reach of the Yangtze River, Environ. Chem., 2018, 37, 505-512 (in Chinese).

8 M. J. Feng, Q. Zhang, N. H. Song, Y. Q. Bu, Z. B. Yang, Y. H. Liu, R. X. Guo, J. Q. Chen and S.H. Zhang, Occurrence Characteristics and Risk Assessment of Antibiotics in Source Water of the Nanjing Reach of the Yangtze River, *Chin. J, Envir. Sci.*, 2019, 40, 98-105 (in Chinese).

9 Y. Jiang, The occurrence and risk assessment of antibiotic and antibiotic resistant genes in a reservoir located at Yangtze River, Shanghai Jiao Tong University, Shanghai, China, 2018 (in Chinese).

10 W. H. Xu, G. Zhang, S. C. Zou, Z. H. Ling, G. L. Wang and W. Yan, A preliminary investigation on the occurrence and distribution of antibiotics in the Yellow River and its tributaries, China, *Water Environ. Res.*, 2009, 81, 248-254.

11 S. N. Zhao, X. H. Liu, D. M. Cheng, G. N. Liu, B. C. Liang, B. S. Cui and J. H. Bai, Temporal–spatial variation and partitioning prediction of antibiotics in surface water and sediments from the intertidal zones of the Yellow River Delta, China, *Sci. Total Environ.*, 2016, 569-570, 1350-1358.

12 Z. H. Zhou, J. L. Zhao, X. D. Wei and M. S. Liu, occurrence and Ecological Risk of Antibiotics in Surface Water of Guangzhou Section of Pearl River, *Ecol. Environ. Sci.*, 2017, 26, 1034-1041 (in Chinese).

- 13 M. S. Liu, Z. H. Zhou, Y. X. Liu, J. L. Zhao and Y. P. Cai, Distribution Characteristics of Antibiotics in Part of Pearl River, *Guangzhou Chem. Ind.*, 2017, 45, 159-162 (in Chinese).
- 14 J. F. Yang, G. G. Ying, J. L. Zhao, R. Tao, H. C. Su and Y. S. Liu, Spatial and seasonal distribution of selected antibiotics in surface waters of the Pearl Rivers, China, *J. Environ. Sci. Health B.*, 2011, 46, 272-280.
- 15 X. M. Liang, B. C. Chen, X. P. Nie, Z. Shi, X. P. Huang and X. Li, The distribution and partitioning of common antibiotics in water and sediment of the Pearl River Estuary, South China, *Chemosphere.*, 2013, 92, 1410-1416.
- 16 S. Li, W. Z. Shi, H. M. Li, N. Xu, R. J. Zhang, X. J. Chen, W. L. Sun, D. H. Wen, S. L. He, J. G. Pan, Z. G. He and Y. Y. Fan, Antibiotics in water and sediments of rivers and coastal area of Zhuhai City, Pearl River estuary, south China, *Sci. Total Environ.*, 2018, 636, 1009-1019.

- 17 L. H. Gao, Y. Shi, W. H. Li, Liu, J and Y. Q. Cai, Occurrence, distribution and bioaccumulation of antibiotics in the Haihe River in China, *J. Environ. Monit.*, 2012, 14, 1248-1255.
- 18 Y. Luo, L. Xu, M, Rysz, Y. Q. Wang, H. Zhang and P. J. J. Alvarez, Occurrence and Transport of Tetracycline, Sulfonamide, Quinolone, and Macrolide Antibiotics in the Haihe River Basin, China, *Environ. Sci. Technol.*, 2011, 45, 1827-1833.
- 19 H. Y. Chen, L. J. Jing, Y. Teng and J. S. Wang, Characterization of antibiotics in a large-scale river system of China: Occurrence pattern, spatiotemporal distribution and environmental risks, *Sci. Total Environ.*, 2018, 618, 409-418.
- 20 D. X. Wang and Q. Q. Wang, Composition and Spatial Distribution Characteristics of Antibiotics in Main Rivers of Shandong Province, *Environ. Sci. Manage.*, 2020, 45, 67-70 (in Chinese).
- 21 H. Zhang, W. J. Guo, C. Zhu, H. L. Li, G. X. Wang, T. X. Yue and B. T. Ding, Composition and Spatial Distribution Characteristics of Antibiotics in Main Rivers of Shandong Province, *Environ. Monit in China.*, 2019, 35, 94-99 (in Chinese).
- 22 H. Y. Liu, Occurrence, deposition trend and risk assessment of typical antibiotics in the aquatic environment of the Anhui section of Huaihe River Basin, Anhui Normal University, Anhui, China, 2020 (in Chinese).
- 23 L. Lang, X. F. Dong and J. B. Di, Determination of 11 Antibiotics in Harbin Section of Songhua River by SPE-HPLC, *China. Water and Wastewater.*, 2018, 34, 114-118 (in Chinese).
- 24 P. P. W, Research on the distribution and removal of antibiotics in different water bodies, Harbin Industry University, Harbin, China, 2016 (in Chinese).
- 25 S. N. He, Distribution, Ecological risk, Flux and Source of Typical Emerging Contaminants in the Jilin Songhua River, Jilin University, Jilin, China, 2019 (in Chinese).
- 26 W. H. Wang, H. Wang, W. F. Zhang, H. Liang and D. W. Gao, Occurrence, distribution, and risk assessment of antibiotics in the Songhua River in China *Environ. Sci. Pollut. Res.*, 2017, 24, 19282-19292.
- 27 Y. W. Qin, L. Zhang, Y. Shi, Y. Q. Ma, X. Chang and Z. C. Liu, Contamination characteristics and ecological risk assessment of typical antibiotics in surface water of the Daliao River, China, *China. Res. Environ. Sci.*, 2015, 28, 000361-368 (in Chinese).
- 28 C. Q. Yang, L. X. Wang, X. H. H and J. P. Chen, Analysis of pollution levels of 16 antibiotics in the river water of Daliao River water system, *Chin. J. Chrom.*, 2012, 30, 756-762 (in Chinese).
- 29 Y. Bai, W. Meng, J. Xu, Y. Zhang and C. Guo, Occurrence, distribution and bioaccumulation of antibiotics in the Liao River Basin in China, *Environ. Sci.: Processes. impacts.*, 2014, 16, 586-593.
- 30 D. Dong, L. Zhang, S. Liu, Z. Guo and H. Y. X, Antibiotics in water and sediments from Liao River in Jilin Province, China: occurrence, distribution, and risk assessment, *Environ. Earth Sci.*, 2016, 75, 1202.
- 31 Z. S. Lu, Distribution characteristics and risk assessment of typical antibiotics in Shenfu section Hunhe River, Shenyang Normal University, Shenyang, China, 2020 (in Chinese).
- 32 Y. Xu, C. Guo, J. P. Lv, S. Hou, Y. Luo, Y. Zhang and J. Xu, Spatiotemporal profile of tetracycline and sulfonamide and their resistance on a catchment scale, *Environ. Pollut.*, 2018, 241, 1098-1105.
- 33 B. Kolar, L. Arnus, B. Jeretin, A. Gutmaher, D. grobne and M. K. Durjaa, The toxic effect of oxytetracycline and trimethoprim in the aquatic environment, Chemosphere., 2014, 115, 75-80.
- 34 Y. Hu, X. Yan, Y. Shen, M. X. Di and J. Wang, Antibiotics in surface water and sediments from Hanjiang River, Central China: Occurrence, behavior and risk assessment, *Ecotoxicol. Environ. Saf.*, 2018, 157,150-158.
- 35 L. H. Yang, G. G. Ying, H.C. Su, J. L. Stauber, M.S. Adams and M. T. Binet, Growth-inhibiting effects of 12 antibacterial agents and their mixtures on the freshwater microalga Pseudokirchneriella subcapitata, *Ecotoxicol. Environ. Saf.*, 2010, 27,1201-1208.