Supporting Information to: A Holistic Approach to Multicomponent EXAFS: Sr and Cs **Complexation in Clayey Soils**

Pieter Bots,^{*a} M. Josick Comarmond,^b Timothy E. Payne,^b Katharina Gückel,^{c,d} Rebecca J. Lunn,^a Luca Rizzo,^a Alexandra E.P. Schellenger,^a and Joanna C. Renshaw^a

a. Department of Civil and Environmental Engineering, University of Strathclyde, Glasgow, G1 1XJ, United Kingdom. E-mail: pieter.bots@strath.ac.uk

Australian Nuclear Science and Technology Organisation, Lucas Heights, NSW 2234, Australia.
 Helmholtz-Zentrum Dresden-Rossendorf, Institute of Resource Ecology, Bautzner Landstraße 400, 01328 Dresden, Germany

d. Current address: Helmholtz Zentrum München GmbH, German Research Center for Environmental Health, Department Infrastructure, Ingolstädter Landstraße 1, 85764 Neuherberg, Germany

Fig. S1 Summary of the mineralogical composition of samples used for the adsorption experiments on mixed phase solids (Fig. 1 and 2), this includes the composite clayey soil sample and the Little Forest Legacy Site core samples from two site locations: CH1a¹ and CH30, and their respective depth interval^{2,3}

Table S1 Summary of the variables used during the shell by shell fitting strategy to obtain information on the surface species of Sr.

	Anatase pH 5	Anatase pH 7	Anatase pH 8	Illite- smectite pH 5	Illite- smectite pH 7	Illite- smectite pH 8	Kaolinite pH 5	Kaolinite pH 7	Kaolinite pH 8	Soil pH 5	Soil pH 7	Soil pH 8
S0 ^{2#}	1	1	1	1	1	1	1	1	1	1	1	1
ΔE ₀ *	E0ana5	E0ana7	E0ana8	E0ill5	E0ill7	E0ill8	E0kao5	E0kao7	E0kao8	E0soil5	E0soil7	E0soil8
		Sr-O			Sr-O			Sr-O(1)			Sr-O	
C.N.*	CNOana5	CNOana7	CNOana8	CNOill5	CNOill7	CNOill8	CNO1kao5	CNO1kao7	CNO1kao8	CNOsoil5	CNOsoil7	CNOsoil8
R*	ROana5	ROana7	ROana8	ROill5	ROill7	ROill8	RO1kao5	RO1kao7	RO1kao8	ROsoil5	ROsoil7	ROsoil8
σ*	ssOana5	ssOana7	ssOana8	ssOill5	ssOill7	ssOill8	ssOkao	ssOkao	ssOkao	ssOsoil5	ssOsoil7	ssOsoil8
		Sr-Ti			Sr-Si			Sr-O(2)			Sr-Si	
C.N.*	CNTiana5	CNTiana7	CNTiana8	CNSiill5	CNSiill7	CNSiill8	CNO2kao5	CNO2kao7	CNO2kao8	CNSisoil5	CNSisoil7	CNSisoil8
R*	RTiana	RTiana	RTiana	RSiill	RSiill	RSiill	RO2kao	RO2kao	RO2kao	RSisoil	RSisoil	RSisoil
σ*	ssTiana	ssTiana	ssTiana	ssSiill	ssSiill	ssSiill	ssOkao	ssOkao	ssOkao	ssSisoil	ssSisoil	ssSisoil
								Sr-Si				
C.N.*							CNSikao5	CNSikao7	CNSikao8			
R*							RSikao	RSikao	RSikao			
σ*							ssSikao	ssSikao	ssSikao			

[#] The amplitude correction factor (S₀²) was fixed to 1 to enable the determination of the coordination numbers for the Sr scattering paths.

* C.N. represents the coordination number (fixed, the errors on the C.N. are estimated to be ~25%), ΔE_0 the energy shift, R the radial distance and σ^2 the Debye-Waller factor, the variables with the same name (in italic) were fitted simultaneously to the same value

pH 7 pH 7 pH 7 pH 7 pH 7 So ^{2#} 1 1 1 1 ΔEo* E0ana E0ill E0kao E0soil~ Anatase Sr-O Sr-O ROana ROana σ ^{2#} 8.7 R.7 fAnatase~ ROana SoOana σ ^{2#} ssOana SsOana SsOana SoOana σ ^{2*} ssOana SsOana SsOana SsOana σ ^{2*} ssOana SsTiana RTiana RTiana σ* ssTiana SsTiana SsTiana SsTiana Sr-O C.N.* 9.3 9.3 fjiite~ RNIII σ ^{2*} SsOill SsOill SsOill σ ^{2*} 0.9 0.9 fjiite~ SsOill σ ^{2*} SsSiill SsSiill SsSiill σ ^{2*} SsSiill SsSiill SsSiill σ ^{2*} SsOlkao SsOlkao SsOlkao SsO2kao SsO2kao <th></th> <th>Anatase</th> <th>Illite-smectite</th> <th>Kaolinite</th> <th>Soil</th>		Anatase	Illite-smectite	Kaolinite	Soil	
So ^{2#} 1 1 1 1 ΔEo* EOana EOill EOkao EOsoil~ Anatase Sr-O Anatase Sr-O C.N.* 8.7 8.7 fAnotase~ ROana ROana o²* ssOana Sr-O SsOana SsOana o²* ssOana Sr-Ti O.7 Gana assTiana ssTiana Sr-Ti O.7 Str-Ti C.N.* 0.7 O.7 fAnotase~ RTiana assTiana ssTiana SsTiana SsTiana Str-O C.N.* 9.3 9.3 fuite~ Rtiana ssTiana ssTiana Str-O Str-O Str-O C.N.* 9.3 9.3 fuite~ Rtiana ssTiana sstian Str-Si Str-Si Str-Si C.N.* 0.9 O.9 fuite~ Str-Si Str-O(1) Kaolinite Str-O(1) Str-O(2) C.N.* 8.9 8.9 fucotinite~ StrO(2) R* RO2kao StrOa <th></th> <th>pH 7</th> <th>pH 7</th> <th>pH 7</th> <th>pH 7</th>		pH 7	pH 7	pH 7	pH 7	
ΔE ₀ * EOana EOill EOkao EOsoil~ Anatase Sr-O Sr-O Sr-O ROana ROana ROana ROana ROana ROana SoOana SoOana	S ₀ ^{2#}	1	1	1	1	
Anatase Sr-O C.N.* 8.7 8.7 fAnotase [~] R* R0ana R0ana σ^{2*} ss0ana Ss0ana σ^{2*} ss0ana So0ana σ^{2*} ss0ana R0ana σ^{2*} ss0ana So0ana C.N.* 0.7 0.7 fAnotase [~] R* RTiana RTiana σ^* ssTiana SsTiana Illite-smectite SsTiana SsTiana C.N.* 9.3 9.3 finite [~] R* R0ill R0ill R0ill σ^{2*} SsOill SsOill SsOill Str-O Str-Si Strill Strill σ^{2*} SsSiill SsSiill SsSiill σ^{2*} SsSiill SsSiill SsSiill Str-O(1) Kaolinite SsOila SsOila R* RO1kao RO1kao Soltao ssOlkao SsO2kao SsO2kao SsO2kao Str-O(2) Str-O(2) Str-O(2) Str-Si <t< th=""><th>ΔE₀*</th><th>EOana</th><th>EOill</th><th>E0kao</th><th>E0soil~</th></t<>	ΔE ₀ *	EOana	EOill	E0kao	E0soil~	
Sr-O C.N.* 8.7 8.7 fAnatase~ R* ROana ROana a^{2*} ssOana SsOana a^{2*} a^{7} a^{7} R* RTiana RTiana RTiana σ^* ssTiana SsTiana SsTiana Stran SsTiana SsTiana SsTiana C.N.* 9.3 9.3 fillite~ Review R* ROill ROill ROill σ^{2*} SsSOill SsSOill SsSOill σ^{2*} SsSiill RSiill RSiill σ^{2*} SsSOill SsSOila SsOila a^{2} SsSOila SsOila SsOila a^{2} SsSOila SsOila SsOila a^{2} SsOila SsOila SsOila </th <th></th> <th></th> <th>Anat</th> <th>ase</th> <th></th>			Anat	ase		
C.N.* 8.7 8.7 fAnatase~ R* ROana ROana σ^{2*} ssOana ssOana σ^{2*} ssOana SsOana Sr-Ti Sr-Ti Riana C.N.* 0.7 Riana σ^* ssTiana RTiana σ^* ssTiana ssTiana Sr-O C.N.* 9.3 R* ROIII ROIII σ^{2*} SsOIII SsOIII Sr-O C.N.* 9.3 9.3 fillite~ R* ROIII ROIII ROIII σ^{2*} SsOIII SsOIII SsOIII Sr-Si C.N.* 0.9 0.9 fillite~ R* RSIIII RSIIII SsSIIII σ^{2*} SsSOIIA SsSIIA SsSIIA R* RO1kao ssO1kao σ^{2*} SsO1kao ssO1kao ssO1kao SiOa SiOa SiOa			Sr-	0		
R* ROana ROana σ²* ssOana ssOana ssOana ssOana ssOana Sr-Ti Sr-Ti RTiana C.N.* 0.7 RTiana σ* ssTiana ssTiana σ* ssTiana ssTiana σ* ssTiana ssTiana C.N.* 9.3 9.3 fjunte~ R* ROIII ROIII σ²* SsOIII SsOIII σ²* SsOIII SsOIII σ²* SsOIII SsOIII σ²* SsOIII SsOIII σ²* SsSIIII ROIII σ²* SsSIII SsSIII σ²* SsSIII SsSIII σ²* SsSIII SsSIII σ²* SsOIkao SsOIkao σ²* SsOIkao SsOIkao σ²* SsO2kao SsO2kao σ²* SsO2kao SsO2kao ssO2kao SsO2kao SsO2kao	C.N.*	8.7			8.7 • f Anatase~	
σ²* ssOana ssOana Sr-Ti Sr-Ti C.N.* 0.7 Ariana σ* ssTiana RTiana σ* ssTiana ssTiana σ* ssTiana SsTiana Billite-smectite Sr-O Sr-O C.N.* 9.3 9.3.fillite~ R* ROIII ROIII σ²* SsOIII SsOIII SsToina SsOIII SsOIII σ²* SsOIII SsOIII σ²* SsOIII SsOIII σ²* SsSIII SsSIII σ²* SsSIII ROII σ²* SsSIII SsSIII σ²* SsSIII SsSIII σ²* SsOIkao SsOIkao ssOIkao SsOIkao SsOIkao σ²* SsO2kao SsO2kao σ²* SsO2kao SsO2kao σ²* SsO2kao SsO2kao ssO2kao SsSOikao SsSikao <t< th=""><th>R*</th><th>ROana</th><th></th><th></th><th>ROana</th></t<>	R*	ROana			ROana	
Sr-Ti C.N.* 0.7 $0.7f_{Anatase}^{\sim}$ R* RTiana RTiana σ^* ssTiana SsTiana Illite-smectite Sr-O C.N.* 9.3 9.3 fjillite^{\sim} R* ROIII ROIII ROIII σ^{2*} SsOIII SsOIII SsOIII Sr-Si C.N.* 0.9 0.9 fjillite^{\sim} R* RSIIII RSIIII RSIIII σ^{2*} SsSIII SsSIII SsSIII SsSOIINE SsSIII C.N.* 0.9 0.9 fjillite^{\sim} R* RSIIII RSIIII RSIIII of the anatase of the ana	σ ² *	ssOana			ssOana	
C.N.* 0.7 $0.7f_{Anatase}^{*}$ R* RTiana RTiana σ^{*} ssTiana ssTiana Illite-smectite Sr-O C.N.* 9.3 σ^{2*} 9.3 9.3 fjuite~ R* 9.3 fjuite~ $r-O$ ROIII r Sr-O C.N.* 9.3 R* 9.3 fjuite~ R* 9.3 fjuite~ R* 9.3 fjuite~ R* 9.3 fjuite~ ROIII ROIII Str-Oi C.N.* 0.9 0.9 fjuite~ R* RSiiII RSiiII Str-O(1) C.N.* 8.9 8.9 ffxaolinite~ R* RO1kao ssO1kao str-O(2) C.N.* 3.1 3.1 fixaolinite~ R* RO2kao ssO2kao str-Si C.N.* 5.7 <th></th> <th></th> <th>Sr-</th> <th>Ti</th> <th></th>			Sr-	Ti		
R* RTiana RTiana σ* ssTiana ssTiana Illite-smectite Sr-O Sr-O C.N.* 9.3 9.3 flutte~ R* ROIII ROIII σ2* SsOIII SsOIII Sr-Si Sr-Si Str-Si C.N.* 0.9 0.9 flutte~ R* RSiIII RSiIII σ2* SsSOIII SsSOII Str-O(1) RSIIII Str-O(1) C.N.* 8.9 8.9 fkaolinite~ R* RO1kao ssO1kao σ2* SsO1kao ssO1kao σ2* SsO1kao ssO1kao σ2* SsO1kao ssO1kao σ2* SsO2kao ssO2kao σ2* SsO2kao ssO2kao σ2* Str-Si Str-Si C.N.* S.7 S.7 fkaolinite~ R* RSikao RSikao σ2* StrAo StrAo <th colspai<="" th="" th<=""><th>C.N.*</th><th>0.7</th><th></th><th></th><th>0.7·f_{Anatase}~</th></th>	<th>C.N.*</th> <th>0.7</th> <th></th> <th></th> <th>0.7·f_{Anatase}~</th>	C.N.*	0.7			0.7 ·f _{Anatase} ~
σ* ssTiana ssTiana Illite-smectite Sr-O Sr-O 9.3 · fullite~ R* 9.3 9.3 · fullite~ R* ROIII ROIII σ2* SsOIII SsOIII Sr-Si SsOIII SsOIII C.N.* 0.9 0.9 · fullite~ R* RSiIII RSIIII σ2* SsSIII SsSIII SsSiIII SsSSIII SsSIIII σ2* SsSIIII SsSIII σ2* SsSIIII SsSIII σ2* SsSIII SsSIII σ2* SsSIII SsSIII σ2* SsSIII SsSIII σ2* SsSIII SsSIII G2* SsOIkao SsOIkao σ2* SsOIkao SsOIkao σ2* SsO2kao SsO2kao σ2* SsO2kao SsO2kao σ2* SSIAO SsIAo σ2* SsSikao Ssikao	R*	RTiana			RTiana	
Illite-smectite Sr-O C.N.* 9.3 R* ROIII σ2* SSOIII Sr-Si SSOIII C.N.* 0.9 Sr-Si SSOIII C.N.* 0.9 R* RSiIII G2* SSSIII Sr-O(1) SSSIII C.N.* 8.9 R* RO1kao G2* SSOIkao SSO1kao SSO1kao g2* SSO2kao SSO2kao SSO2kao g2* SSO2kao SSO2kao SSO2kao g2* SSOIkao	σ*	ssTiana			ssTiana	
Sr-O C.N.* 9.3 9.3 fullite~ R* ROIII ROIII σ^{2*} SsOIII SsOIII C.N.* 0.9 0.9 fullite~ R* RSIIII RSIIII σ^{2*} SsSSIII SsSSIII C.N.* 8.9 8.9 fkaolinite~ R* RO1kao RO1kao σ^{2*} SsOIkao ssOIkao C.N.* 3.1 3.1 fkaolinite~ R* RO2kao RO2kao σ^{2*} SsO2kao SsO2kao Str-O(2) Str-O(2) Str-O(2) C.N.* 3.1 3.1 fkaolinite~ R* RO2kao Sto2kao σ^{2*} Sto2kao Sto2kao Sto2kao Sto2kao Sto2kao σ^{2} StiKao RSikao R* RSikao RSikao σ^{2} Sto3kao Sto3kao			Illite-sm	nectite		
C.N.* 9.3 9.3 future~ R* ROIII ROIII σ²* SSOIII SSOIII Sr-Si Strilite~ RSIIII C.N.* 0.9 0.9 future~ R* RSIIII RSIIII σ²* SSSIII SSSIII C.N.* 8.9 8.9 fkaotinite~ R* RO1kao RO1kao σ²* SSO1kao SSO1kao Sr-O(2) C.N.* 3.1 3.1 fkaotinite~ R* RO2kao RO2kao SO2kao σ²* S.O2kao SSO2kao SSO2kao G²* S.7 5.7 fkaotinite~ R* RSikao RSikao σ² SSIAo SSIAo			Sr-	0		
R* ROIII ROIII σ^{2*} SSOIII SSOIII Sr-Si Sr-Si C.N.* 0.9 0.9·fillite~ R* RSiiII RSiiII σ^{2*} SSSIII SSSIII Sr-O(1) Kaolinite SSOIkao C.N.* 8.9 8.9·ficaolinite~ R* RO1kao RO1kao σ^{2*} SSOIkao SSOIkao Sr-O(2) C.N.* 3.1 3.1·ficaolinite~ R* RO2kao RO2kao SO2kao σ^{2*} S.O2kao SSO2kao SSO2kao G.N.* 5.7 5.7·ficaolinite~ R* RSikao RSikao σ^{2} SSSikao SSSikao	C.N.*		9.3		9.3 ·f _{Illite} ~	
σ²* ssOill ssOill Sr-Si Sr-Si	R*		ROill		ROill	
Sr-Si C.N.* 0.9 0.9-fjllite [~] R* RSiill RSiill σ ^{2*} SSSiill SSSiill σ ^{2*} SSSiill SSSiill C.N.* 8.9 8.9-fkaolinite R* RO1kao RO1kao σ ^{2*} SSO1kao SSO1kao σ ^{2*} SSO1kao SSO1kao σ ^{2*} SSO2kao SSO2kao σ ^{2*} SSO2kao SSO2kao ssO2kao SSO2kao SSO2kao σ ^{2*} S.7-f _{Kaolinite} [~] R* R* S.7.7 S.7-f _{Kaolinite} [~] R* RSikao RSikao σ ² SSSikao SSSikao	σ ² *		ssOill		ssOill	
C.N.* 0.9 0.9 fillite~ R* RSiill RSiill σ²* SSSiill SSSiill ssSiill ssSiill ssSiill G²* SSSIII SSSIII Kaolinite ssSiill ssSiill C.N.* 8.9 8.9 fkaolinite~ R* R01kao R01kao σ²* SsO1kao ssO1kao ssO1kao ssO1kao ssO1kao σ²* 3.1 3.1 fkaolinite~ R* R02kao R02kao σ²* SsO2kao ssO2kao σ²* S.7 fkaolinite~ R* S.7 fs.7 fs.000000000000000000000000000000000000			Sr-	Si		
R* RSiill RSiill σ²* SSSiill SSSiill Kaolinite Sr-O ₍₁₎ C.N.* 8.9 fkaolinite~ R* RO1kao RO1kao σ²* SSO1kao sSO1kao σ²* S.0 galantine~ R* RO1kao sSO1kao σ²* S.1 3.1:fKaolinite~ R* RO2kao RO2kao σ²* SSO2kao SSO2kao ssO2kao SSO2kao SSO2kao σ² SSikao RSikao g² SSSikao SSikao	C.N.*		0.9		0.9 ·f illite~	
σ²* ssSiill ssSiill Kaolinite Sr-O ₍₁₎ Kaolinite Sr-O ₍₁₎ C.N.* 8.9 8.9 fkaolinite~ R* RO1kao RO1kao σ²* ssO1kao ssO1kao σ²* SsO1kao SsO1kao σ²* SsO1kao ssO1kao σ²* SsO1kao SsO1kao c.N.* 3.1 3.1 fkaolinite~ R* RO2kao RO2kao σ²* ssO2kao ssO2kao ssO2kao SsO2kao SsO2kao σ²* 5.7 5.7 fkaolinite~ R* RSikao RSikao σ² ssSikao ssSikao	R*		RSiill		RSiill	
Kaolinite Sr-O ₍₁₎ C.N.* 8.9 8.9 fkaolinite~ R* R01kao R01kao o²* SsO1kao ssO1kao Sr-O ₍₂) Sr-O ₍₂) St-O ₍₂) C.N.* 3.1 3.1: fkaolinite~ R* R02kao R02kao o²* SsO2kao SsO2kao Sr-Si St-Si St-Si C.N.* 5.7 5.7: fkaolinite~ R* RSikao RSikao g² SsSikao SsSikao	σ ² *		ssSiill		ssSiill	
Sr-O(1) C.N.* 8.9 8.9 f Kaolinite ~ R* RO1kao RO1kao σ²* SSO1kao SSO1kao C.N.* 3.1 3.1:f Kaolinite ~ R* RO2kao RO2kao σ²* SSO2kao SSO2kao σ²* S.7.7 S.7.f Kaolinite ~ R* RSikao RSikao σ² SSSikao SSSikao			Kaoli	nite		
C.N.* 8.9 8.9 fkaolinite~ R* R01kao R01kao σ²* ss01kao ss01kao Sr-O(2) Sr-O(2) Str-O(2) C.N.* 3.1 3.1:fkaolinite~ R* R02kao R02kao σ²* ss02kao ss02kao Sr-Si Sr-Si Str-Si C.N.* 5.7 5.7:fkaolinite~ R* RSikao RSikao σ² ssSikao ssSikao			Sr-C	D (1)		
R* RO1kao RO1kao σ²* ssO1kao ssO1kao Sr-O(2) Sr-O(2) Sr-O(2) C.N.* 3.1 3.1 fKaolinite~ R* RO2kao RO2kao σ²* ssO2kao ssO2kao Sr-Si Sr-Si Str-Si C.N.* 5.7 5.7 fKaolinite~ R* RSikao RSikao σ² ssSikao ssSikao	C.N.*			8.9	8.9· f Kaolinite~	
σ²* ssO1kao ssO1kao Sr-O ₍₂₎ Sr-O ₍₂₎ Sr-O ₍₂₎ C.N.* 3.1 3.1·fκaolinite~ R* RO2kao RO2kao σ²* ssO2kao ssO2kao Sr-Si Sr-Si Str-Si C.N.* 5.7 5.7·fκaolinite~ R* RSikao RSikao σ² ssSikao ssSikao	R*			RO1kao	RO1kao	
Sr-O(2) C.N.* 3.1 3.1:fKaolinite~ R* RO2kao RO2kao σ²* ssO2kao ssO2kao Sr-Si C.N.* 5.7 5.7:fKaolinite~ R* RSikao RSikao σ² ssSikao ssSikao	σ ² *			ssO1kao	ssO1kao	
C.N.* 3.1 3.1: fκαolinite~ R* RO2kao RO2kao σ²* SSO2kao ssO2kao Sr-Si 5.7 5.7: fκαolinite~ R* RSikao RSikao σ² SsSikao ssSikao			Sr-C	D (2)		
R* RO2kao RO2kao σ²* ssO2kao ssO2kao Sr-Si	C.N.*			3.1	3.1.fKaolinite~	
σ²* ssO2kao ssO2kao Sr-Si	R*			RO2kao	RO2kao	
Sr-SiC.N.*5.75.7 · f _{Kaolinite} ~R*RSikaoRSikaoσ²ssSikaossSikao	σ ² *			ssO2kao	ssO2kao	
C.N.* 5.7 5.7 f καοlinite~ R* RSikao RSikao σ² SsSikao ssSikao			Sr-	Si		
R* RSikao RSikao σ² ssSikao ssSikao	C.N.*			5.7	5.7 ·f _{Kaolinite} ~	
σ ² ssSikao ssSikao	R*			RSikao	RSikao	
	σ²			ssSikao	ssSikao	

 $\label{eq:solution} \textbf{Table S2} \ \text{Example of the holistic fitting strategy (Sr at pH 7) and the respective variables} used to determine the speciation within the composite clayey soil samples \\$

* C.N. represents the coordination number (fixed, the errors on the C.N. are estimated to be ~25%), ΔE_0 the energy shift, R the radial distance and σ^2 the Debye-Waller factor, the amplitude correction factor (S₀²) were fixed, and the variables with the same name (in italic) were fitted simultaneously to the same value. C.N. were fixed to the results from the shell-by-shell fits (Table S10)

~ The variables in bold highlight the unique variables required to fit the EXAFS of the soil samples using this holistic fitting strategy and represent the fraction of Sr adsorbed to anatase ($f_{Anatose}$), to illite-smectite (f_{illite}) and to kaolinite ($f_{Kaolinite}$)

Table S3 Summary of the variables used during the shell-by-shell and holistic (Cs at pH7) fitting strategy to obtain information on the speciation within the composite clayeysamples.

Shell-by-shell	Illite-smectite pH 7	Kaolinite pH 7	Soil pH 7
S ₀ ^{2#}	1	1	1
ΔEo	E0ill7	E0kao7	E0soil7
		Cs-O(1)	
C.N.#	8	7	8
R (Å)	RO1ill7	RO1kao7	RO1soil7
σ (Ų)*	ssOill7	ssOkao7	ssOsoil7
		Cs-O(2)	
C.N.#	4	5	4
R (Å)	RO2ill7	RO2kao7	RO2soil7
σ (Ų)*	ssOill7	ssOkao7	ssOsoil7
		Cs-Si	
C.N.#	5	6	5.5
R (Å)	RSiill7	RSikao7	RSisoil7
σ (Ų)	ssSiill7	ssSikao7	ssSisoil7
Holistic	Illite-smectite pH 7	Kaolinite pH 7	Soil pH 7
S ₀ ^{2#}	1	1	1
ΔEo	E0ill7	E0kao7	E0soil7~
	11	lite-smectite	
		Cs-O(1)	
C.N.*	8		7* f 111ite~
R (Å)*	RO1ill7		RO1kao7
σ (Ų)*	ssOill7		ssOkao7
		Cs-O(2)	
C.N.#	4		5* f Illite~
R (Å)*	RO2ill7		RO2kao7
σ (Ų)*	ssOill7		ssOkao7
		Cs-Si	
C.N.*	5		6* f Illite~
R (Å)*	RSiill7		RSikao7
σ (Ų)*	ssSiill7		ssSikao7
		Kaolinite	
		Cs-O(1)	
C.N.*		7	7*(1- ∫ Illite)∼
R (Å)*		RO1kao7	RO1kao7
σ (Ų)*		ssOkao7	ssOkao7
		Cs-O(2)	
C.N.*		5	5*(1- f _{Illite})~
R (Å)*		RO2kao7	RO2kao7
σ (Ų)*		ssOkao7	ssOkao7
		Cs-Si	
C.N.*		6	6*(1- f 111ite)~
R (Å)*		RSikao7	RSikao7
σ (Ų)*		ssSikao7	ssSikao7

 $^{\scriptscriptstyle \#}$ The amplitude correction factor (S_0^2) was fixed to 1.

* C.N. represents the coordination number (fixed, the errors on the C.N. are estimated to be ~25%), ΔE_0 the energy shift, R the radial distance and σ^2 the Debye-Waller factor, the variables with the same name (in italic) were fitted simultaneously to the same value and the C.N. were fixed based on the C.N. for O and Cs were fixed based on Molecular Dynamics for Cs complexation at the Si vacancy sites of the basal plane of Illite⁴ or kaolinite⁵ and EXAFS analyses on Cs interaction with a clayey soil.⁶

~ The variables in bold highlight the unique variables required to fit the EXAFS of the soil samples using this holistic fitting strategy and represent the fraction of Cs adsorbed to illite-smectite ($f_{\rm illite}$) and to kaolinite (1- $f_{\rm illite}$)

Table S4 Summary of the results from the adsorption experiments at trace concentrations of Sr-85 and Cs-137 (at ~20 Bq/ml), including the solid/solution ratio (g/L), the measured initial and final pH, and Sr-85 and Cs-137 concentrations in solution (in Bq/ml), the % removed from solution (adsorbed), the Sr-85 and Cs-137 concentrations on the solids (in Bq/g), and the respective distribution coefficients (K_D , in ml/g). The description of the experiments includes the solid phase and the composition of the solutions, the graphical representation of the data is shown in Fig. 1.

					9	Strontium					Caesium		
Experiments	Solid	$\mathbf{p}\mathbf{H}_{i}$	pH_{final}	Initial conc.	Final conc.	%	Solid conc.	KD	Initial conc.	Final conc.	%	Solid conc.	KD
	(g/L)			(Bq/ml)	(Bq/ml)	adsorbed	(Bq/g)	(ml/g)	(Bq/ml)	(Bq/ml)	adsorbed	(Bq/g)	(ml/g)
Apataco	9.66	4.05	4.25	21.04	14.93	29.0	632	42	23.08	21.97	4.8	114	5
20 Ba/ml	9.67	5.04	5.45	20.96	8.03	61.7	1337	166	23.14	21.30	7.9	190	9
Sr 85 and	9.70	5.98	6.26	20.95	2.27	89.2	1926	849	23.14	20.17	12.8	306	15
51-65 allu	9.67	7.04	7.08	20.92	0.75	96.4	2086	2774	23.12	20.52	11.3	270	13
	9.66	7.94	7.92	20.95	0.25	98.8	2143	8549	23.12	21.63	6.5	155	7
Illite-	9.68	4.23	4.43	20.89	6.90	67.0	1446	210	23.13	1.80	92.2	2204	1224
smectite:	9.69	5.08	5.09	20.99	4.80	77.2	1672	349	23.12	1.26	94.5	2256	1784
20 Bq/ml	9.66	5.93	6.01	20.90	2.63	87.4	1891	720	23.11	2.10	90.9	2175	1033
Sr-85 and	9.70	7.06	7.04	20.64	2.91	85.9	1827	628	23.15	2.61	88.7	2117	811
Cs-137	9.65	8.45	7.83	20.98	2.67	87.3	1897	710	23.15	1.06	95.4	2288	2154
Kaolinita	9.70	4.27	4.45	20.98	17.18	18.1	392	23	23.19	10.18	56.1	1341	132
20 Ba/ml	9.70	4.94	5.14	20.99	13.08	37.7	816	62	23.15	5.34	76.9	1835	344
20 By/III	9.66	5.87	6.43	20.97	11.28	46.2	1003	89	23.18	5.03	78.3	1878	374
51-65 allu	9.68	7.06	7.31	20.94	10.54	49.7	1075	102	23.14	4.39	81.0	1938	441
CS-157	9.69	8.04	8.03	20.97	10.89	48.1	1041	96	23.07	5.21	77.4	1844	354
Coile	9.73	4.33	4.45	22.78	11.71	48.6	1138	97	23.53	1.11	95.3	2306	2077
30II.	9.75	5.14	5.14	22.92	10.00	56.3	1324	132	23.51	1.72	92.7	2235	1303
20 Bq/mi	9.75	6.09	5.60	22.89	8.30	63.7	1496	180	23.50	3.13	86.7	2089	668
Sr-85 and	9.76	7.04	7.00	22.90	5.75	74.9	1758	306	23.55	1.21	94.9	2290	1891
US-137	9.79	8.28	7.80	22.92	7.02	69.4	1623	231	23.55	2.02	91.4	2199	1090

Table S5 Summary of the results from the adsorption experiments at elevated concentrations of Sr and Cs (at 25 μ g/ml [ppm]), including the solid/solution ratio (g/L), the measured initial and final pH, and Sr and Cs concentrations in solution (in μ g/ml [ppm]), the % removed from solution (adsorbed), the Sr and Cs concentrations on the solids (in μ g/g), and the respective distribution coefficients (K_D , in ml/g). The description of the experiments includes the solid phase and the composition of the solutions, the graphical representation of the data is shown in Fig. 1.

					ç	Strontium			_		Caesium		
Experiments	Solid	pHi	pH_{final}	Initial conc.	Final conc.	%	Solid conc.	KD	Initial conc.	Final conc.	%	Solid conc.	KD
	(g/L)			(µg/ml)	(µg/ml)	adsorbed	(µg/g)	(ml/g)	(µg/ml)	(µg/ml)	adsorbed	(µg/g)	(ml/g)
	9.92	3.95	3.91	23.7	22.9	3.2	81	3	24.1	23.7	1.8	40	2
Anatase:	9.94	5.09	4.79	23.7	21.3	10.2	241	11	24.2	23.6	2.4	60	2
25 ppm	9.95	5.95	5.49	23.8	19.5	18.0	432	22	24.2	23.6	2.5	60	3
Sr and Cs	9.94	6.98	6.50	23.7	15.3	35.7	845	56	24.2	23.3	3.4	91	4
	9.95	7.81	7.16	23.7	10.9	54.2	1286	119	24.1	23.3	3.2	80	3
	9.93	4.05	4.02	23.7	12.8	45.9	1098	85	24.1	17.5	27.5	665	38
Illite-	9.92	5.00	4.80	23.7	11.0	53.6	1280	117	24.2	16.8	30.4	746	44
smectite:	9.89	5.94	5.69	23.6	6.3	73.2	1749	276	24.0	14.3	40.5	981	69
25 ppm	9.87	6.68	6.55	23.6	5.8	75.4	1803	310	24.0	13.5	43.9	1064	79
Sr and Cs	9.84	7.08	6.67	25.0	6.4	74.5	1890	296	25.0	13.4	46.5	1179	88
	9.92	7.54	7.25	23.7	5.5	76.9	1835	335	24.1	13.2	45.1	1099	83
	9.92	3.96	4.02	23.7	23.1	2.3	60	2	24.1	20.7	14.1	343	17
Kaalinita	9.94	4.93	4.82	23.7	21.0	11.7	272	13	24.2	19.1	20.9	513	27
Adonnite:	9.95	5.90	5.88	23.8	20.0	15.8	382	19	24.2	18.6	23.1	563	30
25 ppm	10.00	7.19	6.94	23.8	19.9	16.3	390	19	24.2	18.6	23.2	560	30
Sr and Cs	9.91	6.94	6.79	25.2	20.3	19.2	494	24	25.2	18.6	26.2	666	36
	9.92	8.07	7.58	23.7	19.5	17.9	423	22	24.2	18.3	24.1	595	32
	9.98	3.92	3.97	23.7	23.9	-0.9%	-22	-1	24.1	24.0	0.7%	18	1
Goethite	9.88	5.03	5.04	23.7	23.5	1.0%	25	1	24.1	23.6	2.0%	49	2
25 ppm	9.88	5.90	5.87	23.7	22.3	5.9%	141	6	24.1	22.9	5.2%	127	6
Sr and Cs*	9.95	7.16	7.01	23.6	22.5	4.7%	111	5	24.1	24.4	-1.3%	-31	-1
	9.94	8.11	7.82	23.6	22.4	5.0%	119	5	24.0	23.4	2.6%	63	3
	9.91	3.89	3.89	23.7	25.3	-6.7%	-161	-6	24.1	25.0	-3.7%	-91	-4
Quartz	9.90	4.87	4.97	23.8	25.3	-6.4%	-154	-6	24.2	25.0	-3.6%	-88	-4
25 ppm	9.89	6.07	6.09	23.7	25.6	-7.6%	-183	-7	24.2	25.5	-5.5%	-133	-5
Sr and Cs*	9.99	7.08	6.86	23.7	24.4	-2.9%	-68	-3	24.2	24.6	-1.7%	-41	-2
	9.96	7.62	7.29	23.7	24.8	-4.6%	-110	-4	24.1	25.2	-4.2%	-102	-4
	9.92	4.09	4.11	23.7	21.2	10.3	252	12	24.1	21.7	9.9	242	11
	9.97	5.09	4.88	23.8	17.3	27.3	652	38	24.2	20.2	16.3	401	20
Soil:	9.95	6.21	6.07	23.7	14.8	37.6	894	61	24.1	19.9	17.5	422	21
25 ppm	9.95	6.90	6.76	23.7	14.2	40.1	955	67	24.1	19.5	19.3	462	24
Sr and Cs	9.73	7.24	7.03	24.7	16.4	33.7	853	52	24.7	19.8	19.7	504	25
	9 90	7.88	7 4 9	23.6	12.7	46.4	1101	87	24.1	18 5	23.3	566	31

* The Sr and Cs adsorption experiments to goethite and quartz were performed during a set of preliminary experiments to develop the appropriate experimental procedures, as such the errors on the aqueous analyses (and consequently on the calculated values: % adsorbed, solid concentration and K_D values) are larger compared to results from the other adsorption experiments.

Table S6 Summary of the results from the adsorption experiments at elevated concentrations of Sr (at 25 μ g/ml [ppm]), including the solid/solution ratio (g/L), the measured initial and final pH, and Sr concentrations in solution (in μ g/ml [ppm]), the % removed from solution (adsorbed), the Sr concentrations on the solids (in μ g/g), and the respective distribution coefficients (K_D , in ml/g). The description of the experiments includes the solid phase and the composition of the solutions, the values in bold represent the samples used for X-ray Absorption Spectroscopy analyses and the graphical representation of the data is shown in Fig. 1.

					9	Strontium		
Experiments	Solid	pH_{i}	pH_{final}	Initial conc.	Final conc.	%	Solid conc.	KD
	(g/L)			(µg/ml)	(µg/ml)	adsorbed	(µg/g)	(ml/g)
	9.92	3.96	3.94	24.2	23.2	4.2	101	4
	9.97	5.03	4.66	25.0	22.3	10.6	271	12
Apataco	9.92	5.11	4.81	24.3	21.4	11.6	292	13
Analase:	9.95	5.99	5.50	24.3	19.7	18.9	462	23
25 ppm Sr	9.91	6.95	6.49	24.2	15.6	35.5	868	55
31	9.93	7.49	6.85	24.8	14.4	42.0	1047	73
	9.92	7.83	7.17	24.2	12.1	49.9	1220	100
	9.85	8.75	7.59	25.3	11.5	54.4	1401	121
	9.93	4.01	3.99	24.2	12.8	47.0	1148	89
	9.86	5.02	4.77	24.7	10.6	56.9	1430	134
Illite-	9.92	5.01	4.83	24.3	10.5	56.8	1391	132
smectite:	9.89	5.96	5.76	24.1	5.7	76.5	1860	329
25 ppm	9.88	6.70	6.56	24.2	5.2	78.3	1923	365
Sr	9.89	7.25	6.74	24.7	5.3	78.6	1962	371
	9.94	7.51	7.18	24.2	5.0	79.2	1932	383
	10.08	8.60	7.86	25.9	4.5	82.5	2123	468
	9.97	3.98	4.03	24.2	23.0	5.0	120	5
	9.91	4.92	4.88	24.2	18.3	24.5	595	33
Kaalinita	9.84	5.05	4.89	24.6	20.8	15.6	386	19
25 ppm	9.95	5.87	5.89	24.3	19.0	21.9	533	28
25 ppm Sr	9.93	7.01	6.85	24.8	19.3	22.2	554	29
31	9.97	6.93	6.85	24.3	18.8	22.6	552	29
	9.92	7.99	7.33	25.6	19.2	24.7	645	33
	9.94	7.70	7.99	24.3	18.6	23.4	573	31
	9.98	3.92	3.98	24.2	24.7	-2.0%	-50	-2
Goethite	9.90	5.03	5.05	24.2	22.0	9.3%	229	10
25 ppm	9.90	5.90	5.88	24.2	24.8	-2.2%	-55	-2
Sr*	9.88	7.13	6.95	24.2	23.2	3.8%	92	4
	9.86	8.08	7.79	24.1	23.0	4.6%	113	5
	9.96	3.91	3.88	24.2	25.4	-4.9%	-120	-5
Quartz	10.00	4.89	4.96	24.3	25.4	-4.6%	-111	-4
25 ppm	9.94	6.07	6.08	24.3	24.8	-2.2%	-53	-2
Sr*	9.91	7.01	6.86	24.2	24.8	-2.4%	-59	-2
	9.94	7.58	7.18	24.2	25.1	-3.6%	-89	-4
	9.92	4.09	4.13	24.2	21.3	12.0	292	14
	9.92	5.06	4.87	24.3	16.2	33.3	817	50
Soil	9.79	5.11	4.90	24.5	17.2	29.8	746	43
3011. 25 ppm	9.93	6.16	6.06	24.2	13.3	45.0	1098	82
s> hhiii	9.92	6.94	6.84	24.2	13.6	43.8	1069	79
31	9.85	7.08	6.90	24.6	14.2	42.4	1056	75
	9.93	7.82	7.46	24.2	12.8	47.0	1148	89
	9.68	8.16	7.49	24.9	15.1	39.4	1012	67

* The Sr adsorption experiments to goethite and quartz were performed during a set of preliminary experiments to develop the appropriate experimental procedures, as such the errors on the aqueous analyses (and consequently on the calculated values: % adsorbed, solid concentration and *K*_D values) are larger compared to results from the other adsorption experiments.

Table S7 Summary of the results from the adsorption experiments at elevated concentrations of Cs (at 25 μ g/ml [ppm]), including the solid/solution ratio (g/L), the measured initial and final pH, and Cs concentrations in solution (in μ g/ml [ppm]), the % removed from solution (adsorbed), the Cs concentrations on the solids (in μ g/g), and the respective distribution coefficients (K_D , in ml/g). The description of the experiments includes the solid phase and the composition of the solutions, the values in bold represent the samples used for X-ray Absorption Spectroscopy analyses and the graphical representation of the data is shown in Fig. 1.

						Caesium		
Experiments	Solid	pHi	pH_{final}	Initial conc.	Final conc.	%	Solid conc.	KD
	(g/L)			(µg/ml)	(µg/ml)	adsorbed	(µg/g)	(ml/g)
	9.90	3.95	3.97	24.3	23.4	3.9	91	4
A	9.94	5.08	5.10	24.4	22.9	6.0	151	6
Analase:	9.95	6.00	6.01	24.4	22.0	9.6	241	11
25 ppm	9.88	7.00	6.91	24.9	22.0	11.6	294	13
CS	9.94	6.98	6.93	24.4	22.4	8.1	201	9
	9.90	7.85	7.81	24.3	21.6	11.4	273	13
	9.93	4.05	4.08	24.4	16.3	33.0	816	49
	9.96	5.02	4.97	24.4	14.6	39.9	984	67
lilite-smectite:	9.87	5.95	5.90	24.3	11.6	52.2	1287	110
25 ppm	9.95	6.67	6.60	24.3	11.1	54.3	1327	119
CS	9.82	6.96	6.67	24.8	10.9	56.1	1415	130
	9.91	7.54	7.38	24.3	10.4	57.1	1403	134
	9.94	3.96	4.04	24.3	19.7	18.8	463	23
	9.99	4.94	4.98	24.4	17.4	28.6	701	40
Kaolinite:	9.92	5.89	6.01	24.4	16.4	32.8	806	49
25 ppm	9.88	6.94	6.86	25.0	16.1	35.8	901	56
CS	9.92	7.11	7.03	24.4	16.1	33.9	837	52
	9.94	7.90	7.57	24.4	16.0	34.5	845	53
	9.98	3.92	3.98	24.4	24.5	-0.7%	-18	-1
Goethite	9.88	5.02	5.07	24.3	24.6	-0.9%	-23	-1
25 ppm	9.93	5.90	4.91	24.3	25.3	-3.9%	-97	-4
Cs*	9.88	7.14	7.11	24.3	24.2	0.2%	4	0
	9.86	8.13	7.92	24.2	24.4	-0.6%	-15	-1
	9.99	3.90	3.90	24.4	24.6	-0.9%	-22	-1
Quartz	9.97	4.88	5.02	24.4	24.8	-1.6%	-40	-2
25 ppm	9.97	6.02	6.11	24.4	25.3	-3.7%	-90	-4
Cs*	9.96	7.03	6.87	24.4	24.5	-0.5%	-11	0
	9.98	7.68	7.27	24.4	24.9	-2.4%	-58	-2
	9.87	4.10	4.17	24.3	20.6	15.4	375	18
Soil	9.97	5.08	5.05	24.4	18.4	24.4	602	32
25 nnm	9.98	6.22	6.26	24.4	17.1	29.7	731	42
23 pp://	9.94	6.97	6.91	24.3	16.5	32.2	785	48
03	9.92	7.23	7.01	25.1	16.7	33.3	847	50
	9.90	7.82	7.63	24.3	15.0	38.1	939	62

* The Cs adsorption experiments to goethite and quartz were performed during a set of preliminary experiments to develop the appropriate experimental procedures, as such the errors on the aqueous analyses (and consequently on the calculated values: % adsorbed, solid concentration and K_D values) are larger compared to results from the other adsorption experiments.

Table S8 Summary of the results from the adsorption experiments at trace concentrations of Sr-85 and Cs-137 (at ~20 Bq/ml) to the Little Forest Legacy Site core samples (Fig. S1), including the solid/solution ratio (g/L), the measured initial and final pH, and Sr-85 and Cs-137 concentrations in solution (in Bq/ml), the % removed from solution (adsorbed), the Sr-85 and Cs-137 concentrations on the solids (in Bq/g), and the respective distribution coefficients (K_D , in ml/g). The description of the experiments includes the site locations: CH1a and CH30, and their respective depth interval^{2, 3} and the composition of the solutions, the graphical representation of the data is shown in Fig. 2.

					S	strontium					Caesium		
Experiments	Solid	pHi	pH_{final}	Initial conc.	Final conc.	%	Solid conc.	KD	Initial conc.	Final conc.	%	Solid conc.	KD
	(g/L)			(Bq/ml)	(Bq/ml)	adsorbed	(Bq/g)	(ml/g)	(Bq/ml)	(Bq/ml)	adsorbed	(Bq/g)	(ml/g)
CU12	11.24	3.00	3.16	18.25	16.94	7.2	116.4	7	18.18	1.02	94.4	1527.0	1500
	10.29	3.96	4.13	17.94	13.40	25.3	441.7	33	19.01	0.64	96.6	1784.2	2768
0.4-0.0 m	10.15	4.97	4.89	18.20	6.16	66.1	1185.8	192	19.32	0.39	98.0	1865.4	4819
20 By/III	10.20	6.06	5.80	18.30	3.89	78.8	1413.1	364	19.62	0.88	95.5	1837.3	2099
51-65 allu	10.17	7.10	6.85	18.41	4.29	76.7	1387.2	323	19.46	1.33	93.2	1782.3	1344
CS-157	10.35	8.10	7.40	18.71	2.07	88.9	1608.0	776	19.90	0.70	96.5	1855.9	2662
CH15	10.27	3.02	3.06	16.26	13.73	15.6	246.2	18	18.33	1.38	92.5	1649.7	1194
1 <i>4</i> -1 6 m	10.21	4.03	4.07	17.15	8.63	49.7	834.5	97	19.33	0.98	94.9	1796.9	1835
20 Bg/ml	10.29	5.00	4.85	16.92	4.21	75.1	1235.5	293	19.07	1.02	94.6	1754.8	1716
Sr 85 and	10.42	6.01	5.64	16.77	1.63	90.3	1453.8	891	18.90	1.08	94.3	1711.7	1591
Cc 127	10.22	7.00	6.64	16.77	2.75	83.6	1370.9	498	18.90	2.16	88.6	1637.6	759
C3-137	10.12	8.10	7.52	16.86	2.27	86.5	1441.6	635	19.00	2.07	89.1	1673.3	809
CH15	10.34	3.09	3.11	15.69	12.93	17.5	266.1	21	18.33	1.93	89.5	1585.9	822
2426m	10.35	4.04	4.08	15.79	8.07	48.9	745.5	92	19.75	1.36	93.1	1777.3	1308
2.4-2.0 ml	10.22	4.93	4.85	15.67	6.88	56.1	860.1	125	18.92	2.74	85.5	1584.6	579
Sr 85 and	10.25	6.07	5.74	15.81	2.76	82.6	1273.0	462	18.98	2.14	88.7	1642.5	769
Cc 127	10.39	7.08	6.92	15.95	1.73	89.1	1367.8	790	19.37	2.00	89.7	1672.2	838
	10.14	8.03	7.55	15.62	1.91	87.8	1353.1	710	18.87	2.69	85.8	1596.0	594
0114	10.13	3.01	3.05	18.05	13.85	18.2	325.0	22	19.09	0.89	95.3	1797.0	2022
CH1a	10.20	3.99	4.03	18.22	8.65	49.4	882.3	96	19.19	0.51	97.4	1831.2	3605
3.4-3.6 m	10.00	4.92	4.94	18.11	3.43	79.8	1445.5	396	19.11	0.41	97.8	1869.2	4534
20 Bq/mi	10.23	6.01	5.89	16.96	1.25	92.1	1526.9	1145	19.16	0.46	97.6	1827.9	3974
SI-85 anu	10.09	6.93	6.80	18.18	1.05	93.8	1690.9	1510	19.18	0.55	97.1	1847.0	3377
CS-137	10.17	7.99	7.50	18.20	0.71	95.8	1714.2	2252	19.13	0.51	97.3	1830.0	3582
CH30	10.11	4.53	4.30	7.84	5.15	34.2	265.6	52	22.19	3.84	82.7	1815.4	473
1.0-1.2 m	10.16	5.50	4.97	7.46	4.58	38.6	283.8	62	22.76	5.47	76.0	1702.1	311
20 Bq/ml	10.13	5.53	4.98	7.85	3.70	52.9	409.8	111	22.22	3.04	86.3	1893.6	622
Sr-85 and	10.14	6.52	6.52	7.26	2.16	70.2	505.6	234	22.14	3.18	85.6	1879.6	591
Cs-137*	10.10	5.52	6.64	19.27	7.46	61.3	1170.1	157	22.34	2.77	87.6	1938.0	699

* The adsorption experiments on the samples from CH30 1.0-1.2 m were performed using single spike from a stock solution containing both Sr-85 and Cs-137 (instead of two separate stock solutions) and were performed on different dates; due to the difference in half-life of Sr-85 (65 days) and Cs-137 (30 yr), a selection of the adsorption experiments were performed at 7.2-7.9 Bq/ml as initial Sr-85 concentration instead of ~20 Bq/ml.

Fig. S2 Comparison of the XANES from the adsorption experiments with kaolinite and a blank kaolinite sample plotted as non-normalized $\chi\mu(E)$ (a), and normalized $\chi\mu(E)$ (b) to emphasize the difference in step size of the adsorption samples compared to the blank kaolinite, and the difference in the shape of the XANES between the adsorption samples and the blank kaolinite.

Table S9 Results from Linear Combination Fitting (LCF)⁷ on the Sr XANES and EXAFS spectra, the LCFs were performed on the XANES of the soil samples (from -20 eV to 80 eV relative to the inflection point of the XANES) and on the EXAFS of the soil samples in k-space (from 3 Å⁻¹ to 11 Å⁻¹) using the spectra for aqueous Sr²⁺, SrCO₃ and the Sr adsorption samples at the same pH values as the respective standards, included are the top 5 fits (with the lowest R-factor) where all included spectra/species had a fitted percentage higher than zero and sorted left to right from a low to high R-factor, numbers in parenthesis are the errors as determined by Athena.⁷

Chandand	c	Contribution o	f the standard	s to the XANE	s	с	ontributions o	of the standard	ls to the EXAF	s
Standard		of the s	oil sample at	рН 5 (%)			of the s	oil sample at p	oH 5 (%)	
Aqueous Sr ²⁺				58(2)		18(5)			22(7)	
SrCO₃					12(4)				4(1)	4(1)
Anatase	26(7)		63(2)		37(15)		6(4)			8(5)
Kaolinite	36(2)	36(2)	37(2)	42(2)		25(2)	25(2)	25(2)		
Illite-smectite	38(8)	64(2)			52(15)	62(4)	69(4)	75(2)	74(5)	82(5)
R-factor	0.00036	0.00039	0.00042	0.00069	0.00146	0.016	0.017	0.017	0.026	0.027
Reduced χ^2	6.2·10 ⁻⁵	6.7·10 ⁻⁵	7.2·10 ⁻⁵	1.1.10-4	2.4.10-4	0.076	0.080	0.081	0.13	0.13
Chandaud	(Contribution o	f the standard	s to the XANE	s	С	ontributions o	of the standard	ls to the EXAF	S
Standard		of the s	oil sample at	pH 7 (%)			of the s	oil sample at p	oH 7 (%)	
Aqueous Sr ²⁺				55(2)			14(6)			
SrCO ₃					5(4)			1(1)		3(1)
Anatase	2(7)		60(2)		20(14)	20(6)				18(6)
Kaolinite	39(2)	39(2)	41(2)	45(2)		20(3)	20(3)	18(3)	19(3)	
Illite-smectite	60(7)	62(2)			76(14)	63(6)	71(5)	81(3)	81(2)	77(6)
R-factor	0.00039	0.00039	0.00057	0.00068	0.00149	0.014	0.015	0.015	0.015	0.018
Reduced χ^2	6.7·10 ⁻⁵	6.7·10 ⁻⁵	9.7·10 ⁻⁵	1.1.10-4	2.5·10 ⁻⁴	0.069	0.072	0.074	0.074	0.087
Standard	C	Contribution o	f the standard	s to the XANE	s	С	ontributions o	of the standard	ls to the EXAF	S
Stanuaru		of the s	oil sample at	рН 8 (%)			of the s	oil sample at p	oH 8 (%)	
Aqueous Sr ²⁺			15(10)		53(2)				23(9)	
SrCO ₃										
Anatase	14(5)		40(10)	54(2)		17(7)		14(8)	56(8)	77(4)
Kaolinite	43(2)	43(2)	45(2)	46(2)	48(2)	21(3)	20(3)		33(4)	35(4)
Illite-smectite	44(5)	58(2)				66(7)	80(3)	84(7)		
R-factor	0.00024	0.00025	0.00035	0.00036	0.00039	0.022	0.023	0.028	0.035	0.037
Reduced χ^2	4.2·10 ⁻⁵	4.4·10 ⁻⁵	6.2·10 ⁻⁵	6.3·10 ⁻⁵	6.8·10 ⁻⁵	0.11	0.11	0.14	0.17	0.17

Table S10 Summary of the results from the shell-by-shell fitting strategy to the EXAFS of Sr adsorbed to anatase, illite-smectite, kaolinite and the composite clayey soil samples, the fits are visualized in Fig. S3, the fitting strategy is summarized in Table S1 and the fit ranges and goodness of fit parameters (R-factor, reduced χ^2 and the results from the f-test for EXAFS⁸) are summarized in Table S10.

	Anatase pH 5	Anatase pH 7	Anatase pH 8	Illite- smectite pH 5	Illite- smectite pH 7	Illite- smectite pH 8	Kaolinite pH 5	Kaolinite pH 7	Kaolinite pH 8	Soil pH 5	Soil pH 7	Soil pH 8
S02*	1	1	1	1	1	1	1	1	1	1	1	1
ΔE₀ (eV)*	-3.6(4)	-3.0(2)	-2.9(2)	-1.8(3)	-1.8(4)	-1.7(4)	-6.1(13)	-6.4(12)	-6.8(12)	-2.9(3)	-2.8(3)	-2.9(3)
		Sr-O			Sr-O			Sr-O(1)			Sr-O	
C.N.*	9.3(4)	8.7(2)	8.5(2)	8.9(6)	9.3(7)	9.1(7)	8.8(10)	8.9(10)	9.0(10)	10.6(3)	10.2(3)	10.1(4)
R (Å)*	2.595(4)	2.596(2)	2.597(3)	2.602(5)	2.604(5)	2.604(5)	2.60(1)	2.60(1)	2.60(1)	2.610(3)	2.608(3)	2.609(4)
σ (Ų)*	0.0095(7)	0.0101(4)	0.0098(4)	0.0080(8)	0.0088(9)	0.0087(9)	0.011(1)	0.011(1)	0.011(1)	0.0105(5	0.0100(5)	0.0100(5)
		Sr-Ti			Sr-Si			Sr-O(2)			Sr-Si	
C.N.*	0.5(3)	0.7(3)	0.9(3)	1.0(8)	0.9(8)	0.9(8)	3.6(12)	3.1(12)	2.9(13)	1.1(5)	1.2(5)	1.2(6)
R (Å)*	3.58(1)	3.58(1)	3.58(1)	3.12(2)	3.12(2)	3.12(2)	3.12(1)	3.12(1)	3.12(1)	3.79(2)	3.79(2)	3.79(2)
σ (Ų)*	0.016(5)	0.016(5)	0.016(5)	0.014(10)	0.014(10)	0.014(10)	0.011(1)	0.011(1)	0.011(1)	0.013(6)	0.013(6)	0.013(6)
								Sr-Si				
C.N.*							6.6(32)	5.7(29)	5.5(29)			
R (Å)*							3.79(2)	3.79(2)	3.79(2)			
σ (Ų)*							0.014(10)	0.014(10)	0.014(10)			

* C.N. represents the coordination number, ΔE_0 the energy shift, S_0^2 the amplitude correction factor (fixed to 1 to enable determining the C.N.), R the radial distance and σ^2 the Debye-Waller factor, the numbers in parentheses are the uncertainties as calculated by Artemis,⁷ see Table S1 for details on the fitting strategies.

Fig. S3 Visualization of EXAFS in k-space (a-d) and the respective Fourier Transform (FT, e-h) from the samples on Sr adsorption to anatase (a and e), illite-smectite (b and f), kaolinite (c and g) and soil (d and h) and the respective fit to the spectra from the shell-by-shell fitting strategy (Table S9), including the contribution of each scattering path to the EXAFS and the FT of the fit to the adsorption sample at pH 8.

Table S11 Summary of the fit ranges used for the shell-by-shell strategy to fit the Sr EXAFS, and the respective goodness of fit parameters (R-factor, reduced χ^2 and the results from the f-test for EXAFS⁸), the fitting strategy is summarized in Table S1 and the results are summarized in Table S9.

Adsorption	k-range (Å-1)	R-Range (Å)	No. of independent data pointe*	Description	of parameters in:	No. of variables Fit2	R-factor	Reduced χ^2	Statistical significance that
experiments			data points*	Fit1	Fit2	Fit2	FITZ	FITZ	than Fit2#
Anatase	2 10 5	1525	20.27		All	17	0.00092	10.7	
pH 5-8	3-10.5	1.5-3.5	28.37	All	No Sr-Si	12	0.00283	46.1	98.6%
Illite-smectite	2 11	1525	20.29		All	17	0.00163	60.7	
pH 5-8	3-11	1.5-3.5	30.28	All	No Sr-Ti	12	0.00459	141.9	99.0%
Kaalinita					All	19	0.0064	95.9	
	3.5-11	1.5-4	35.36	All	No Sr-O(2)	15	0.0150	168.1	99.4%
рп 5-6				No Sr-Si	No Sr-O ₍₂₎ ,Si	10	0.0302	300.4	99.0%
Soil	2.44 4.5		27.72		All	17	0.0019	45.7	99.7%
pH 5-8	5-11	1.5-4	37.73	All	No Sr-Si	12	0.0043	103.2	

* Number of independent points (NIDP) in the EXAFS spectra is calculated by Artemis: $NIDP = \sum_{\pi}^{2} (k_{max} - k_{min})(R_{max} - R_{min})^{9}$

* The top row of each fit is empty as the top row describes the fit with all/most fitted variables to which the subsequent fits have been compared

Table S12 Summary of the fit ranges used for the holistic strategy to fit the Sr EXAFS, and the respective goodness of fit parameters (R-factor, reduced χ^2 and the results from the f-test for EXAFS⁸), an example of the fitting strategy is summarized in Table S2. The fits described as "All" are summarized in Table S13, and the fits described as "no $f_{Anatose}$ " are summarized in Table 2 and Fig. 5.

Adsorption	k-range	R-Range	No. of independent	Description	of parameters in:	No. of variables	R-factor	Reduced χ^2	Statistical significance that
experiments	(A'')	(A)	data points*	Fit1	Fit2	Fit2	FitZ	FITZ	than Fit2 [#]
pH 5					All	21	0.00349	64.83	
Soil				All	No fAnatase	20	0.00343	72.26	0.0%
	2 10 5	1 5 4		All	No fillite	20	0.00373	63.88	76.6%
	3-10.5	1.5-4		All	No <i>f</i> Kaolinite	20	0.00429	78.94	96.3%
			42.40	No f Anatase	No f _{Anatase} , f _{Illite}	19	0.00714	141.35	100.0%
			42.49	No <i>f</i> Anatase	No f _{Anatase} , f _{Kaolinite}	19	0.00400	90.65	93.4%
Anatase	3-10.5	1.5-3.5		No <i>f</i> _{Anatase}	No Sr-Ti	18	0.00367	67.91	53.9%
Kaolinite	2 5 11	1 5 4		No f Anatase	No Sr-O(2)	18	0.00828	138.48	100.0%
	5.5-11	1.5-4		No Sr-O(2)	No Sr-O ₍₂₎ ,Si	16	0.01225	208.54	99.2%
Illite	3-10.5	1.5-3.5		No <i>f</i> _{Anatase}	No Sr-Si	18	0.00573	171.01	99.7%
pH 7					All	21	0.00195	42.38	
Soil				All	No fAnatase	20	0.00195	40.50	3.7%
	2 10 5	1 5 4		All	No fillite	20	0.00261	59.16	98.7%
	3-10.5	1.5-4		All	No <i>f</i> Kaolinite	20	0.00215	49.66	85.2%
			42.40	No f Anatase	No fAnatase, fillite	19	0.00521	86.88	100.0%
			42.49	No f Anatase	No f _{Anatase} , f _{Kaolinite}	19	0.00219	48.85	88.8%
Anatase	3-10.5	1.5-3.5		No f Anatase	No Sr-Ti	18	0.00247	50.36	93.0%
Kaolinite	3 5 11	1 5 4		No <i>f</i> Anatase	No Sr-O(2)	18	0.00509	77.19	100.0%
	5.5-11	1.5-4		No Sr-O(2)	No Sr-O ₍₂₎ ,Si	16	0.00860	121.09	99.8%
Illite	3-10.5	1.5-3.5		No fana	No Sr-Si	18	0.00348	93.91	99.9%
pH 8					All	21	0.00232	44.48	
Soil				All	No fAnatase	20	0.00232	42.50	0.0%
	2 10 5	1 5 4		All	No fillite	20	0.00321	59.74	99.1%
	3-10.5	1.5-4		All	No <i>f</i> Kaolinite	20	0.00250	48.10	79.6%
			42.40	No f Anatase	No fAnatase, fillite	19	0.00542	74.10	100.0%
			42.49	No f Anatase	No f _{Anatase} , f _{Kaolinite}	19	0.00257	47.21	86.7%
Anatase	3-10.5	1.5-3.5		No <i>f</i> Anatase	No Sr-Ti	18	0.00332	54.69	98.3%
Kaolinite	2 5 11	1 5 4		No fAnatase	No Sr-O(2)	18	0.00469	60.73	100.0%
	3.5-11	1.5-4		No Sr-O ₍₂₎	No Sr-O ₍₂₎ ,Si	16	0.00796	90.69	99.8%
Illite	3-10.5	1.5-3.5		No fAnatase	No Sr-Si	18	0.00412	102.82	99.8%

* Number of independent points (NIDP) in the EXAFS spectra is calculated by Artemis: $NIDP = \sum_{\pi}^{2} (k_{max} - k_{min})(R_{max} - R_{min})^{9}$

* The top row of each fit is empty as the top row describes the fit with all/most fitted variables to which the subsequent fits have been compared.

Table S13 Summary of the results from the holistic fitting strategy to the EXAFS of Sr adsorbed to anatase, illite-smectite, kaolinite and the composite clayey soil samples (including refining the fraction of anatase [$f_{Anastase}$] during the fitting strategy). The fitting strategy and respective parameters are summarized in Table S2 and the fit parameters and goodness of fit parameters (R-factor, reduced χ^2 and the results from the f-test for EXAFS⁸) are summarized in Table S12.

	Anatase pH 5	Anatase pH 7	Anatase pH 8	Illite- smectite pH 5	Illite- smectite pH 7	Illite- smectite pH 8	Kaolinite pH 5	Kaolinite pH 7	Kaolinite pH 8	Soil pH 5 [#]	Soil pH 7 [#]	Soil pH 8 [#]	
S02*	1	1	1	1	1	1	1	1	1	1	1	1	
ΔE₀ (eV)*	-3.6(8)	-3.0(4)	-2.8(4)	-1.7(4)	-1.9(3)	-1.8(3)	-7.0(8)	-6.3(7)	-5.9(9)	-3.8(6)	-2.7(4)	-2.7(4)	
	Sr-O				Sr-O			Sr-O ₍₁₎			f Anatase ~		
C.N.*	9.5	8.6	8.5	8.9	9.3	9.1	8.8	8.9	9.0				
R (Å)*	2.600(9)	2.596(4)	2.598(5)	2.602(4)	2.603(3)	2.603(3)	2.603(8)	2.600(7)	2.606(8)	0.49(26)	0.02(23)	0.00(24)	
σ (Ų)*	0.0099(7)	0.0099(3)	0.0099(4)	0.0079(2)	0.0087(2)	0.0087(2)	0.0111(4)	0.0110(4)	0.0110(4)				
	Sr-Ti				Sr-Si			Sr-O ₍₂₎			f _{Illite} ~		
C.N.*	0.5	0.7	1.0	1	0.9	0.9	3.6	3.2	2.9				
R (Å)*	3.42(10)#	3.57(4)	3.59(3)	3.13(2)	3.11(2)	3.11(2)	3.11(1)	3.12(1)	3.12(2)	0.24(26)	0.74(19)	0.76(19)	
σ (Ų)*	0.020(18)	0.017(6)	0.017(2)	0.013(2)	0.014(3)	0.014(3)	0.011(2)	0.012(2)	0.012(3)				
								Sr-Si			f Kaolinite		
C.N.*							6.6	5.7	5.4				
R (Å)*							3.79(2)	3.80(2)	3.80(2)	0.30(13)	0.25(12)	0.25(15)	
σ (Ų)*							0.020(2)	0.020(2)	0.020(2)				

* S_0^2 represents the amplitude correction factor (fixed to 1), C.N. the coordination number (fixed, the errors on the C.N. are estimated to be ~25%), ΔE_0 the energy shift, R the radial distance and σ^2 the Debye-Waller factor, the numbers in parentheses are the uncertainties as calculated by Artemis,⁷ the C.N. were fixed based on the shell by shell fits (Table S10).

The value in bold deviates significantly from the value refined during the shell-by-shell fitting strategy (Table S10)

 \sim The fitting parameters to the soil samples (besides the energy shift, ΔE_0) represent the fraction of Sr in the sample complexed with anatase (*f*_{Anatase}), illite-smectite (*f*_{illite}) and kaolinite (*f*_{kaolinite}; Table S2) rather than single scattering paths

Table S14 Summary of the results from the shell-by-shell fitting strategy to the EXAFS of Cs adsorbed to illite-smectite, kaolinite and the composite clayey soil samples, for comparison this table includes published coordination environments obtained through Molecular Dynamics for Cs complexation at the Si vacancy sites of the basal plane of Illite⁴ or kaolinite⁵. The fits are visualized in Fig. S4, the fitting strategy is summarized in Table S3.

	Illite- smectite pH 7	Kerisit et al. ⁴	Kaolinite pH 7	Vasconcelos et al. ⁵	Soil pH 7
S0 ^{2*}	1	1	1	1	1
ΔE₀ (eV)*	-0.6(52)		4.8(63)		0.0(67)
			Cs-O(1)		
C.N.*	8*	7.8	7*	5.4	8*
R (Å)*	3.18(6)	3.15 3.15(8)		3.12	3.14(4)
σ (Ų)*	0.022(5)		0.016(6)		0.018(3)
			Cs-O(2)		
C.N.*	4*	3.9	5*	5.1	4*
R (Å)*	3.55(10)	3.45	3.37(10)	3.41	3.43(6)
σ (Ų)*	0.022(5)		0.016(6)		0.018(3)
			Cs-Si		
C.N.*	5*	5-6	6*	5.4	5.5*
R (Å)*	4.11(8)	3.85-3.95	4.14(8)	4.06	4.12(8)
σ (Ų)*	0.016(4)		0.013(3)		0.014(2)

* C.N. represents the coordination number, ΔE_0 the energy shift, S_0^2 the amplitude correction factor (fixed to 1 to enable determining the C.N.), R the radial distance and σ^2 the Debye-Waller factor, the numbers in parentheses are the uncertainties as calculated by Artemis,⁷ see Table S3 for details on the fitting strategies.

Fig. S4 Visualization of EXAFS in k-space (a-d) and the respective Fourier Transform (FT, e-h) from the samples on Cs adsorption at pH7 to illite-smectite (e and d), kaolinite (b and e) and soil (c and f) and the respective fit to the spectra from the shell-by-shell fitting strategy (Table S14), including the contribution of each scattering path to the EXAFS and the FT of the fit to the adsorption sample at pH 8.

Table S15 Summary of the fit ranges used for the holistic strategy to fit the Cs EXAFS, and the respective goodness of fit parameters (R-factor, reduced χ^2 and the results from the f-test for EXAFS⁸). The fitting strategy is summarized in Table S3 and the results are summarized in Table 3.

Adsorption	k-range (Å⁻¹)	R-Range (Å)	No. of independent data points*	Description of parameters in:		No. of variables	R-factor	Reduced χ^2	Statistical significance that
experiments				Fit1	Fit2	Fit2	FILZ	FILZ	than Fit2#
C eil		2.2-4	20.22		All	14	0.028	72.0	
5011	3.5-9.5			All	No fkao	14	0.031	78.3	n/a^
рн /				All	No fill	14	0.033	86.6	n/a^
Illite-smectite	3.5-9.5	2.2-4		All	No Cs-O(2)	13	0.036	78.3	77.8%
pH 7				No Cs-O(2)	No Cs-O(2),Si	11	0.127	227	98.7%
Kaolinite	2505	224	2.2-4	All	No Cs-O(2)	13	0.036	80.3	76.0%
pH 7	3.3-9.5	2.2-4		No Cs-O(2)	No Cs-O(2),Si	11	0.188	301	99.7%

* Number of independent points (NIDP) in the EXAFS spectra is calculated by Artemis: $^{7}NIDP = \sum_{\pi}^{2} (k_{max} - k_{min})(R_{max} - R_{min})^{9}$

* The top row of each fit is empty as the top row describes the fit with all/most fitted variables to which the subsequent fits have been compared

^ Because f_{iii} was defined as $1-f_{kao}$, the number of independent variables between both fits were identical and no f-test could be performed, instead the reduction in both the reduced χ^2 and the R-factor when including both, f_{iii} and f_{kao} , instead of either one suggests both, f_{iii} and f_{kao} , need to be included for the best fit.

References

- 1 M. D. Raven and P. G. Self, XRD report—Bulk and clay fraction analysis of soil samples for ANSTO. CSIRO Land and Water XRD Report D2381., CSIRO, 2011.
- 2 S. Hankin, Little Forest Burial Ground-geology, geophysics and well installation 2009-2010, Report ANSTO/E-781, Australian Nuclear Science and Technology Organisation, 2012.
- 3 T. E. Payne, J. J. Harrison, D. I. Cendon, M. J. Comarmond, S. Hankin, C. E. Hughes, M. P. Johansen, A. Kinsela, L. M. Shahin, A. Silitonga, S. Thiruvoth and K. L. Wilsher, Journal of Environmental Radioactivity, 2020, **211**, 106081.
- 4 S. Kerisit, M. Okumura, K. M. Rosso and M. Machida, Clay Clay Min., 2016, **64**, 389-400.
- 5 I. F. Vasconcelos, B. A. Bunker and R. T. Cygan, Journal of Physical Chemistry C, 2007, **111**, 6753-6762.
- 6 P. Bots, J. C. Renshaw, T. E. Payne, M. J. Comarmond, A. E. P. Schellenger, M. Pedrotti, E. Calì and R. J. Lunn, Environmental Science: Nano, 2020, **7**, 1481-1495.
- 7 B. Ravel and M. Newville, Journal of Synchrotron Radiation, 2005, **12**, 537-541.
- 8 L. Downward, C. H. Booth, W. W. Lukens and F. Bridges, 2007.
- 9 E. A. Stern, Physical Review B, 1993, 48, 9825-9827.