SUPPORTING INFORMATION

Involvement of a unique chemodosimeter in selective estimation of noxious cyanide in common water hyacinth (*Eichhornia crassipes*): An environmental refinement

Shrabani Saha^a, Priyotosh Ghosh^a, Paritosh Mondal^b, Ansuman Chattopadhyay^b and Prithidipa Sahoo^{a*}

^a S. Saha, P. Ghosh and Dr. P. Sahoo, Department of Chemistry, Visva-Bharati University, Santiniketan, 731235, India.

^b P. Mondal and Dr. A. Chattopadhyay, Department of Zoology, Visva-Bharati University, Santiniketan, 731235, India.

E-mail: prithidipa@hotmail.com.

1.Table S1 Performance comparison of existing methods and present method (colorimetric and fluorescence based chemosensor) for detection of CN-

Analytes	Method of detection	Sensor type	Detection limit	Sensitvity& Selectivity	Application	References
CN-	Colorimetry and Fluorescence based chemosensor	Naphthal dehyde- pyridoxal conjugate	81 nm	High	In common water hyacinth saplings	Current method
CN-	Colorimetry and Fluorescence based chemosensor	Coumarin- thiophene besedschif f base	0.32 μM	Low	In water	Tetrahedron 74 (2018) 6897-6906
CN-	Colorimetryba sed chemosensor	2- hydroxy- 1- naphthald ehyde	105 μM	Low	Nil	New J. Chem., 2015,39, 3900-3907
CN-	Colorimetryba sed chemosensor	4- methylpyr idine and salicylalde hyde	8.0 µM	Low	In water	Anal. Methods, 2015,7, 5239-5244
CN-	Colorimetryba sed chemosensor	4-(<i>p</i> - tolyl)thiaz ol-2- amine	19.4 μM	Moderate	In water	New J. Chem., 2016,40, 7768-7778
CN-	Colorimetryba sedchemosens or	2,3- Diaminom aleonitrile	20 μΜ	Low	Nil	Sensors and Actuators B: Chemical 2015,211, 498-506

2. NMR Studies:

¹H NMR of NPLC in DMSO-d₆:

Fig. S1. ¹H NMR of NPLC in DMSO-d₆ (400 MHz).

¹³C NMR of NPLC in DMSO-d₆:

Fig. S2. ¹³C NMR of NPLC in DMSO-d₆ (400 MHz).

3. Materials and Instruments

All the reagents were purchased from Sigma-Aldrich Pvt.Ltd. Unless otherwise mentioned, materials were obtained from commercial suppliers and were used without further purification. Solvents werdried according to standard procedures. Elix Millipore water was used throughout all experiments. ¹H and ¹³C NMR spectra were recorded on a Bruker 400 MHz instrument. For NMR spectra, DMSO-d₆ and for NMR titration DMSO-d₆ and D₂O were used as solvent using TMS as an internal standard. Chemical shifts are expressed in δ ppm units and ¹H–¹H and ¹H–C coupling constants in Hz. The following abbreviations are used to describe spinmultiplicities in ¹H NMR spectra: s = singlet; d = doublet; t = triplet; m = multiplet.The mass spectrum (HRMS) was carried out using a micromass Q-TOF MicroTM instrument by using Acetonitrile as a solvent. Fluorescence spectra were recorded on a Perkin Elmer Model LS 55 spectrophotometer. UV spectra were recorded on a SHIMADZU UV-3101PC spectrophotometer. FT-IR data were recorded on Shimadzu IRAffinity-1S Fourier transform infrared spectrometer (Spectrum Two) by ATR technique.

Leica TCS SP8 laser scanning confocal microscope system was used for confocal microscopy. Images obtained through section scanning were analyzed by the LasX software with excitation at 425 nm monochromatic laser beam, and emission spectra were integrated over the range 542 nm (single channel) with 10X magnification.

4. UV-vis and fluorescence titration. A stock solution of NPLC (1 μ M) was prepared in water-DMSO (1:1, v/v). CN⁻ solution of concentration 10 μ M was prepared in Millipore water. All experiments were carried out in aqueous medium at neutral pH. During the titration, each time a 1 μ M solution of NPLC was filled in a quartz optical cell of 1 cm optical path length and CN⁻ stock solution was added into the quartz optical cell gradually by using a micropipette. Spectral data were recorded at 1 min after the addition of CN⁻.

5. Calculation of limit of detection (LOD) of NPLCwith CN-:

The detection limit of the chemodosimeter NPLC for CN^- was calculated on the basis of fluorescence titration. To determine the standard deviation for the fluorescence intensity, the emission intensity of four individual receptors without CN^- was measured by 10 times and the standard deviation of blank measurements was calculated.

The limit of detection (LOD) of NPLC for sensing CN⁻ was determined from the following equation.

$$LOD = K \times SD/S$$

Where K = 2 or 3 (we take 3 in this case); SD is the standard deviation of the blank receptor solution; S is the slope of the calibration curve.

Fig. S3 Linear fit curve of **NPLC** at 542 nm with respect to **CN**-concentration. Standard deviations are represented by error bar (n=3).

For NPLC with CN⁻:

From the linear fit graph we get slope = 4.2584×10^8 , and SD value is 11.52605Thus using the above formula we get the Limit of Detection = 8.12×10^{-8} M, i.e 81 nM. Therefore **NPLC** can detect **CN**⁻ up to this very lower concentration by fluorescence technique.

6. Job's plot for determining the stoichiometry of binding by fluorescence method:

Fig. S4 Job's plot of **NPLC** (1 μ M) with CN⁻ (1 μ M) in DMSO-water (1:1, v/v), at neutral pH, by fluorescence method, which indicate 1:2 stoichiometry for **NPLC** with CN⁻ ion. Standard deviations are represented by error bar (n=3).

7. pH Titration

Fig. S5 Fluorescence responses of probe **NPLC** (black) and **NPLC-D** (red) in different pH conditions in water-DMSO (1:1, v/v) (λ_{ex} = 425 nm).

8. Selectivity in presence of other analytes

Fig. S6 Histogram representing competitive fluorescence spectra of NPLC with different bio relevant anions at 542 nm (λ_{ex} = 425 nm) in DMSO-H₂O (1:1, v/v), at neutral pH.[From left to right: 1) Only NPLC, NPLC with 2) CN⁻, 3) CN⁻+ F⁻, 4) CN⁻+ Cl⁻, 5) CN⁻+ Br⁻, 6) CN⁻+ I⁻, 7) CN⁻+ SCN⁻, 8) CN⁻+ AcO⁻, 9) CN⁻+ SH⁻, 10) CN⁻+ H₂PO₄⁻, CN⁻+ 11) NO₃⁻, CN⁻+ 12) CN⁻+ SO₄²⁻, 13) CN⁻+ PO₄³⁻, 14) CN⁻+ ClO₄⁻, 15) CN⁻+ NO₂⁻ and 16) CN⁻+ N₃⁻ in H₂O–DMSO (1:1 v/v, pH 7.0, 10 mM phosphate buffer) solution].

9. Energy minimized structures of NPLC, NPLC-D and keto-NPLC-D with bond distances

Fig. S7 Energy minimized structures of NPLC, NPLC-D and keto-NPLC-D with important bond distances from B3LYP level

i i ubie 62 Details of the geometry optimization in Outbolan 09 program	10.	Table S2	Details of the	he geometry	optimization	in	Gaussian	09	program
---	-----	----------	----------------	-------------	--------------	----	----------	----	---------

Details	NPLC	NPLC-D	keto-NPLC-D
Calculation method	B3LYP	B3LYP	B3LYP
Basis set	6-311G**	6-311G**	6-311G**
E(CAM-B3LYP) (a.u.)	-1124.4651	-1123.5038	-1124.4254
Charge, Multiplicity	0, 1	-2, 1	0, 1
Solvent (CPCM)	Water	Water	Water

11. TDDFT Calulation

Fig. S8 DFT optimized charge densities and the HOMO-LUMO energy gap of NPLC, NPLC-D and keto- NPLC-D

12. Table S3. Selected electronic excitation energies (eV), oscillator strengths (f), main configurations of the low-lying excited states of all the molecules and complexes. The data were calculated by TDDFT//B3LYP/6-311G(d,p) based on the optimized ground state geometries.

Molecules	Electronic Transition	Excitation Energy ^a	f ^b	Composition ^c (%)
NPLC	$S_0 \rightarrow S_1$	2.9068eV426.53 nm	0.7811	$H \rightarrow L (70\%)$
	$S_0 \rightarrow S_7$ 4.0641eV305.07 nm		0.2580	$\text{H-4} \rightarrow \text{L} (59\%)$
NPLC-D	$S_0 \rightarrow S_1$	2.4983eV 496.27 nm	0.8994	$\mathrm{H} \rightarrow \mathrm{L} \; (70\%)$
	$S_0 \rightarrow S_6$	3.7415eV 331.38 nm	0.0370	$\text{H-1} \rightarrow \text{L+1(68\%)}$

keto- NPLC-D	$S_0 \rightarrow S_2$	2.8323eV 437.75 nm	0.2096	$H \rightarrow L (59\%)$
	$S_0 \rightarrow S_3$	3.0152eV 411.19 nm	0.1820	$\text{H-1} \rightarrow \text{L} (54\%)$

^aOnly selected excited states were considered. The numbers in parentheses are the excitation energy in wavelength.^bOscillator strength. ^eH stands for HOMO and L stands for LUMO.

13. Table S4. Energies of the highest occupied molecular orbital (HOMO) and lowest unoccupied molecular orbital (LUMO)

Species	E _{HOMO} (a.u)	E _{LUMO} (a.u)	ΔE(a.u)	ΔE(eV)	∆E(kcal/mol)
NPLC	-0.21984	-0.09822	0.12162	3.31	76.33
NPLC-D	-0.15968	-0.05423	0.10545	2.87	66.18
Keto- NPLC-D	-0.21912	-0.09862	0.1205	3.28	75.64

14. Plausible Mechanism

Fig. S9 Plausible mechanism of interaction between **NPLC** and CN⁻ ions and the formation of **NPLC-D** and **keto- NPLC-D**

15. Water hyacinth (*Eichhornia crassipes*) treatment in laboratory

Fig. S10 (a) Fresh water hyacinth (*Eichhornia crassipes*) sapling (b) sapling treated with aquous sodium cyanide for 4 days