# **Supporting Information**

# Can determination of extractable organofluorine (EOF) be standardized? First interlaboratory comparisons of EOF and fluorine mass balance in sludge and water matrices

Anna Kärrman,<sup>1\*</sup> Leo W.Y. Yeung,<sup>1</sup> Kyra M. Spaan,<sup>2</sup> Frank Thomas Lange,<sup>3</sup> Minh Anh Nguyen,<sup>4</sup> Merle Plassmann,<sup>2</sup> Cynthia A. de Wit,<sup>2</sup> Marco Scheurer,<sup>3</sup> Raed Awad,<sup>4</sup> Jonathan P. Benskin<sup>2\*</sup>

> <sup>1</sup>Man-Technology-Environment Research Centre (MTM), Örebro University <sup>2</sup>Department of Environmental Science, Stockholm University <sup>3</sup>TZW: DVGW-Technologiezentrum Wasser, Germany <sup>4</sup>IVL Swedish Environmental Research Institute

\*Corresponding authors: <u>Anna.Karrman@oru.se;</u> Jon.Benskin@aces.su.se

#### **Sample Preparation**

The unfortified ultrapure water (UP0) was prepared by SU using 6 L ultrapure water in a 10 L polyethylene (PE) container. This water was subsampled into 1 L polypropylene (PP) bottles, which were shipped to ORU and IVL. The ultrapure water fortified to 60.2 ng/L F (UP60) was prepared by SU using 6 L ultrapure water in a 10 L PE container which was fortified with a mixture of PFAS. Final concentrations (in units of ng /L PFAS) were: 10 ng/L PFBA, 20 ng/L PFOA, 15 ng/L PFNA, 15 ng/L PFDA, 10 ng/L PFBS and 21 ng/L PFOS. After thorough mixing this was subsampled into 1 L PP bottles which were shipped to ORU and IVL. The ultrapure water fortified to 334.4 ng/L F (UP334) was prepared by SU using 6 L ultrapure water in a 10 L PE container which was fortified with a mixture of PFAS. Final concentrations (in units of ng/L PFAS) were: 56 ng/L PFBA, 111 ng/L PFOA, 83 ng/L PFNA, 83 ng/L PFDA, 56 ng/L PFBS and 115 ng/L PFOS. After thorough mixing this was subsampled into 1 L PP bottles which were shipped to ORU and IVL. The unfortified, lowlevel groundwater sample (GWlow) was collected in 2020 and distributed by ORU. This groundwater is known to be influenced by AFFF contamination. The unfortified, high-level groundwater sample (GWhigh) was collected in 2020 and distributed by ORU. This groundwater is known to be influenced by industrial activities and a landfill. The pooled, unfortified effluent sample ("effluent") was prepared by SU by pooling effluent from 5 different Swedish wastewater treatment plants (Henriksdal, Gässlösa, Ellinge, Bergkvara and Ryaverket) sampled from 2012 to 2018. The pooled, unfortified sludge sample ("sludge") was prepared by SU by pooling sludge from 7 different Swedish wastewater treatment plants (Henriksdal, Gässlösa, Ellinge, Ryaverket, Umeå, Nolhaga and Floda) sampled in 2005 and 2007. Oven dried at 105°C overnight prior to shipping to each lab. Finally, the unfortified pooled groundwater extract (GWext) was prepared by ORU by combining different contaminated groundwater sample extracts. Portions of the final pooled extract were provided to each participant for direct analysis (i.e. no extraction required).

## Quality control (LC-MS/MS and CIC)

SU-For the aqueous extraction method, two procedural blanks were included consisting of all reagents (no ultrapure water). All target analytes were below LOQ in the blanks, except for PFOS (0.26 ng/L), but this was negligible relative to the samples. Accuracy and precision was evaluated using a replicate spike/recovery experiment, consisting of three samples of ultrapure water (500 mL each) spiked with 50  $\mu$ L of a 0.2 ng/ $\mu$ L target PFAS mix and three samples of ultrapure water spiked (500 mL each) with 500 ng NaF. Recovery of individual PFAS typically ranged from 80-120% (RSD 14-22%), except for PFPeA and PFHxA which showed higher recoveries (122%, and 132%, respectively), and PFDoDA, PFTrDA, PFTeDA, PFHxDA, PFDS which showed lower recoveries (68%, 51%, 28%,

35%, 67%, respectively). Over-recoveries are attributable to matrix effects since these targets were not observed in blanks. Under-recoveries are likely attributable to matrix effects, due to a lack of exactly-matched isotopically labelled internal standards, and/or sorption, which was not accounted for because internal standards were added after extraction. Recovery of inorganic fluorine added to samples and ultrapure water was <4%, indicating its effective removal during extraction.

For analysis of sludge samples, two procedural blanks were included. All target analytes were below LOQ in the blanks, except for PFOS (0.12 ng/g). This was negligible relative to real samples; consequently, no blank subtraction was performed. A NIST domestic sludge standard reference material 2781 (SRM 2781) was extracted and analyzed. Accuracy compared to reference values ranged from 56-76% (RSD 3-14%) for PFHxA, PFHpA, L-PFOA, and PFOS, while PFHxS and FOSA were below LOQ. Overall these values are reasonable considering that internal standards were not fortified prior to extraction, therefore procedural losses were not accounted for. Replicate spike/recovery experiments were also performed using 0.5 g portions of sludge from Henriksdal WWTP (Stockholm) fortified with 50  $\mu$ L of a 50 pg/ $\mu$ L PFAS mix (*n*=3) and 500 ng NaF (*n*=3). The results were consistent with the SRM, with percent recoveries for most PFAS ranging from 60-90% (RSD 7-33%), except for PFTrDA and PFTeDA, which showed higher recoveries (249% and 324%), likely due to a combination of matrix effects and the use of non-exactly matched isotopically labelled internal standards. Recovery of inorganic fluorine was <4%, indicating its effective removal during extraction.

For CIC analysis, all boats were combusted prior to analysis of real samples to minimize background contamination. Each sequence started and ended with a calibration curve. Prior to analysis ~5 instrumental blanks (empty boats) were run to ensure the background was low and reproducible prior to combusting real samples. After every ~5 sample runs another blank was run followed by an instrumental standard (1  $\mu$ g/mL NaF). The accuracy of the CIC analysis was assessed through triplicate direct combustions (i.e. no extraction) of a certified reference material (BCR®-461, fluorine in clay), which revealed good agreement between measured (601 ± 13 mg/kg) versus certified concentrations (568 ± 60 mg/kg).

**ORU**-For water samples, three procedural blanks (consisting of all reagents but no ultrapure water) run along with samples showed no target PFAS above <0.02 ng/L and <0.04 ng/L for groundwater and effluent extraction, respectively. Three in-house quality control (QC) samples consisting of 50 mL of ultrapure water spiked with 1 ng of the target analytes and 1 µg of sodium fluoride were extracted along with samples. Recoveries between 75% to 90% was obtained for most of target analytes except for PFDS (66%) and PFTrDA (48%), and 99% of the spiked inorganic fluoride was removed. The relative standard deviation (RSD) among replicates ranged between 5 to 14%.

For solid samples, three procedural blanks (consisting of all reagents but no sample) run along with samples showed no detectable target analytes (<0.040 ng/g). Three in-house QC samples consisting of 0.5 g of bottom fresh water lake sediment spiked with 10 ng of target analytes and 2  $\mu$ g of sodium fluoride were extracted along with samples resulting in recoveries between 55% and 112% for individual PFAS. Removal of 99.4% of the spiked inorganic fluoride was achieved.

The analysis of organofluorine by CIC started when the RSD of three sequential combustion blanks (empty sample boat analysis) was below 5 %. An additional combustion blank was run after every 5 samples and the combustion blank response (average of combustion blanks before and after the sample) was subtracted from the sample responses, before further data processing. After the additional combustion blank, an instrumental standard (PFBA 430 ng/mL F and PFOA 480 ng/mL F) was analyzed to evaluate the whole performance of the CIC. Signal fluctuation (RSD: 15%) was observed for the instrument standard run after every five samples.

**IVL/TZW**-For water samples, one procedural blank (consisting of all reagents but no ultrapure water) was extracted together with spiked and unspiked ultrapure water, groundwater samples and effluents following the same extraction protocol. Two in-house QCs consisted of 500 mL ultrapure water were included as well. All targets were under detection limit in the procedural blank and no detectable

targets were measured in the in-house QC samples. Detectable amounts of EOF were measured in the procedural blank (8 ng/L F) and in the in-house QC samples (12 and 13 ng/L F). For solid samples, one procedural blank (consisting of all reagents but no sample) and two in-house QCs of ultrapure water were included with the analysis and extracted together with the sludge samples. No detectable target analytes were measured in the procedural blank or in the in-house QCs samples.

The CIC analysis of samples was started when at least three consecutive empty sample boat analyses were at constant low level (<2 ng F) prior to injecting sample extracts (usually within 5 runs). In the sequence of 13 samples, four blanks were grouped around the two samples with the highest expected EOF levels to check for carry-over and were below 2.5 ng F. The average of the combustion blank signals was subtracted from the sample signals, before further data processing. At the beginning and the end of the sequence, two recovery standards were measured: 50 ng F and 300 ng F (5  $\mu$ L and 30  $\mu$ L of a 10 ng/ $\mu$ L F solution of perfluorobutane sulfonic acid (PFBS) in methanol). The recoveries of both standards were 100±5%.



Recovery-corrected quantification Quantification for Fluorine Mass Balance

**Figure S1.** Concentration (ng/L) and homologue profile of detected PFAS in the high-level groundwater sample (GWhigh) for the recovery-corrected quantification (left), and the quantification for fluorine mass balance (right).



**Figure S2**. Individual PFAS concentrations (recovery-corrected) in fluorine equivalents, and the % contribution of A) the ultra-short-chain PFAS to the sum PFAS concentration (ng/L F) in aqueous samples, and B) the three groups (from top) diPAPs (64%), FOSA derivatives (20%), and PFCA/PFSA (16%) to the sum PFAS concentration (ng/g F) in sludge.

**Table S1.** Names, abbreviation and class of individual PFAS included for both fluorine mass balance ( $\sum$ PFAS-16) and extended analysis, along with internal standards used by each lab. Note that some targets are referred to as "acids" although it is acknowledged that these may exist as anions in the environment.

|            |                |                                                                                               |                               | Isotope-labelled standards |                   |             |
|------------|----------------|-----------------------------------------------------------------------------------------------|-------------------------------|----------------------------|-------------------|-------------|
|            | Class          | Native                                                                                        | Abbrevia-<br>tion             | SU                         | ORU               | IVL         |
| ΣPFAS-16   | PFCA           | Perfluorobutanoic acid                                                                        | PFBA                          | 13C4-PFBA                  | 13C4-PFBA         | 13C4-PFBA   |
| included   |                | Perfluoropentanoic acid                                                                       | PFPeA                         | 13C5-PFPeA <sup>a</sup>    | 13C3-PFPeA        | 13C2-PFHxA  |
| in inter-  |                | Perfluorohexanoic acid                                                                        | PFHxA                         | 13C2-PFHxA                 | 13C2-PFHxA        | 13C2-PFHxA  |
| laboratory |                | Perfluoroheptanoic acid                                                                       | PFHpA                         | 13C4-PFHpA                 | 13C4-PFHpA        | 13C4-PFOA   |
| compare-   |                | Perfluorooctanoic acid                                                                        | PFOA                          | 13C4-PFOA                  | 13C4-PFOA         | 13C4-PFOA   |
| compare-   |                | Perfluorononanoic acid                                                                        | PFNA                          | 13C5-PFNA                  | 13C5-PFNA         | 13C5-PFNA   |
| son        |                | Perfluorodecanoic acid                                                                        | PFDA                          | 13C2-PFDA                  | 13C2-PFDA         | 13C2-PFDA   |
|            |                | Perfluoroundecanoic acid                                                                      | PFUnDA                        | 13C2-PFUnDA                | 13C2-PFUnDA       | 13C2-PFUnDA |
|            |                | Perfluorodecanoic acid                                                                        | PFDoDA                        | 13C2-PFDoDA                | 13C2-PFDoDA       | 13C2-PFDoDA |
|            |                | Perfluorotridecanoic acid                                                                     | PFTrDA                        | 13C2-PFDoDA                | 13C2-PFDoDA       | 13C2-PFDoDA |
|            |                | Perfluorotetradecanoic acid                                                                   | PFTeDA                        | 13C2-PFDoDA                | 13C2-PFTeDA       | 13C2-PFDoDA |
|            | PFSA           | Perfluorobutane sulfonic acid                                                                 | PFBS                          | 18O2-PFHxS                 | 13C3-PFBS         | 18O2-PFHxS  |
|            |                | Perfluorohexane sulfonic acid                                                                 | PFHxS                         | 18O2-PFHxS                 | 18O2-PFHxS        | 18O2-PFHxS  |
|            |                | Perfluorooctane sulfonic acid                                                                 | PFOS                          | 13C4-PFOS                  | 13C4-PFOS         | 13C4-PFOS   |
|            |                | Perfluorodecane sulfonic acid                                                                 | PFDS                          | 13C4-PFOS                  | 13C4-PFOS         | 13C4-PFOS   |
|            | Precur-<br>sor | Perfluorooctane sulfonamide                                                                   | FOSA                          | 13C8-FOSA                  | 13C8-FOSA         | 13C4-PFOS   |
| Not        | Ultra-         | Trifluoroacetic acid                                                                          | TFAA <sup>b</sup>             |                            | 13C2-TFAA         |             |
| included   | short-         | Perfluoropropanoic acid                                                                       | PFPrAb                        |                            | 13C4-PFBA         |             |
| in inter-  | chain          | Trifluoromethane sulfonic acid                                                                | TFMS <sup>b</sup>             |                            | 13C3-PFBS         |             |
| laboratory |                | Perfluoropropate sulfonic acid                                                                | PFPrS <sup>b</sup>            |                            | 13C3-PFBS         |             |
| son        | Precur-        | 6:2 fluorotelomer sulfonic acid                                                               | 6:2 FTSA                      |                            | 13C2-6:2 FTSA     |             |
| 5011       | sor            | Perfluorooctane sulfonamido acetate                                                           | FOSAA <sup>C</sup>            |                            | d5-EtFOSAA        |             |
|            |                | N-methyl perfluorooctane sulfonamide acetate                                                  | MeFOSAA <sup>c</sup>          |                            | d5-EtFOSAA        |             |
|            |                | N-ethyl perfluorooctane<br>sulfonamide acetate                                                | EtFOSAA <sup>c</sup>          |                            | d5-EtFOSAA        |             |
|            |                | N-ethyl<br>perfluorooctanesulfonamido-<br>ethanol-based polyfluoro-<br>alkylphosphate diester | di-SAmPAP <sup>C</sup>        |                            | 13C4-8:2<br>diPAP |             |
|            |                | 6:2 polyfluoroalkyl phosphate di-ester                                                        | 6:2 diPAP <sup>c</sup>        |                            | 13C4-6:2<br>diPAP |             |
|            |                | 6:2/8:2 polyfluoroalkyl phosphate di-ester                                                    | 6:2/8:2<br>diPAP <sup>C</sup> |                            | 13C4-6:2<br>diPAP |             |
|            |                | 8:2 polyfluoroalkyl phosphate di-ester                                                        | 8:2 diPAP <sup>c</sup>        |                            | 13C4-8:2<br>diPAP |             |
|            |                | 10:2 polyfluoroalkyl phosphate<br>di-ester                                                    | 10:2 diPAP <sup>C</sup>       |                            | 13C4-8:2<br>diPAP |             |

<sup>a</sup>Except recovery-corrected effluent which used 13C2-PFHxA

<sup>b</sup>Included in analysis of aqueous matrices only

'Included in analysis of solid matrices only

| Parameter                                                   | SU                                                                                                                                                 | ORU                                                                                                                                                                                           | IVL/TZW                                                                                                                                                                                                                                                                |
|-------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Sampling                                                    | Extracts manually placed<br>in a ceramic sample boat<br>containing glass wool                                                                      | Extracts injected on a quartz glass sample boat via auto-sampler                                                                                                                              | Extracts manually placed in a ceramic sample boat containing glass wool                                                                                                                                                                                                |
| Combustion<br>System                                        | HF-210 furnace<br>(Mitsubishi) + ceramic<br>inner combustion tube.                                                                                 | Combustion module (Analytik Jena)<br>+ quartz glass combustion tube                                                                                                                           | AQF-2100H furnace (Mitsubishi) + ceramic inner combustion tube                                                                                                                                                                                                         |
| Combustion<br>temperature                                   | 1100 °C                                                                                                                                            | 1050°C                                                                                                                                                                                        | 1000-1050°C                                                                                                                                                                                                                                                            |
| Combustion<br>gases and flow<br>rates                       | Oxygen (400 mL/min),<br>argon (200 mL/min), and<br>argon mixed with water<br>vapor (100 mL/min) for 5<br>min.                                      | Oxygen (300 mL/min), argon (100 mL/min), and argon mixed with water vapor (100 mL/min), monitored by a flame sensor followed by 2 minutes of post-combustion time with oxygen (400 mL) only   | Oxygen (350 mL/min), argon (150 mL/min), and argon mixed with water vapor (100 mL/min) under hydropyrolytic conditions (water supply, stage 2)                                                                                                                         |
| Absorption                                                  | GA-210 gas absorber unit<br>(Mitsubishi). Absorption<br>in ultrapure water.                                                                        | 920 Absorber Module, Metrohm, in ultrapure water                                                                                                                                              | AbsorptionunitGA-210(Mitsubishi).Absorptioninultrapurewater $(18.2 \ M\Omega \ cm^{-1})$ PURELABClassic,ELGA)containingmethanesulfonicacid $(1 \ mg/L)$ as a control standard.                                                                                         |
| Volume of<br>absorption<br>solution injected<br>onto IC     | 200 μL                                                                                                                                             | 2000 µL onto a trap column first before introducing onto IC                                                                                                                                   | 100 μL                                                                                                                                                                                                                                                                 |
| Ion<br>Chromatograph                                        | Dionex Integrion<br>(Thermo Fisher<br>Scientific)                                                                                                  | 930 Compact IC Flex (Metrohm)                                                                                                                                                                 | ICS2100 (Thermo Fisher Scientific)                                                                                                                                                                                                                                     |
| Ion<br>Chromatography<br>columns &<br>column<br>temperature | Dionex IonPac AS19-<br>4 $\mu$ m anion exchange<br>guard (2 ×50 mm) and<br>analytical (2 × 250 mm)<br>columns maintained at 30<br>°C               | Metrosep A Supp 5–150/4, no column heater                                                                                                                                                     | Dionex <sup>TM</sup> IonPac <sup>TM</sup> AG20-2 $\mu$ m (2 × 50 mm) guard column and<br>Dionex <sup>TM</sup> IonPac <sup>TM</sup> AS20-2 $\mu$ m (2 × 250 mm) analytical column<br>maintained at 30 °C.                                                               |
| Ion<br>Chromatography<br>mobile phase                       | Aqueous hydroxide<br>ramped from 8 mM to<br>100 mM at a flow rate of<br>0.25 mL/min                                                                | Isocratic elution with 64 mmol/L sodium carbonate and 20 mmol/L sodium bicarbonate at a flow rate of 0.7 mL/min                                                                               | Aqueous hydroxide ramped from<br>1 mM to 40 mM at a flow rate of<br>0.25 mL/min(                                                                                                                                                                                       |
| Detection                                                   | Conductivity                                                                                                                                       | Conductivity                                                                                                                                                                                  | Conductivity                                                                                                                                                                                                                                                           |
| Quantification                                              | Eight-point calibration<br>curve prepared from NaF<br>at concentrations ranging<br>from 50 to 25000 $\mu$ g/L<br>fluoride (R <sup>2</sup> >0.998). | A five-point calibration curve at 50, 100, 200, 500 and 1000 $\mu$ g/L PFOS standards using the same combustion method as for the samples (R <sup>2</sup> >0.9999).                           | Two IC calibration curves (by-<br>passing combustion) prepared from<br>NaF at concentrations ranging from<br>$1 \mu g/L$ to $10 \mu g/L$ (6 points) and<br>$10 \mu g/L$ to $500 \mu g/L$ (17 points)<br>fluoride in the absorption solution,<br>R <sup>2</sup> >0.9999 |
| Modifications on<br>commercial CIC                          |                                                                                                                                                    | Sample loop of 100 $\mu$ L changed to 2000 $\mu$ L before introducing sample to IC. All Teflon tubings connected to the combustion unit were replaced either with PEEK or polyurethane tubing |                                                                                                                                                                                                                                                                        |

Table S2. Comparison of combustion IC conditions

**Table S3.** Comparison of LC-MS conditions. All labs performed analysis in negative ionization, multiple reaction monitoring mode. More details on the instrumental parameters are given in references 9,15,29

| Parameter                  | SU                                                                                                                                                                                                                                  | ORU                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | IVL                                                                                                                                                                                                        |
|----------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                            |                                                                                                                                                                                                                                     | Interlab targets                                                                                                                                                                                                                                                           | Extended list                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                            |
| LC system                  | Waters Acquity<br>UPLC                                                                                                                                                                                                              | Waters Acquity<br>UPLC                                                                                                                                                                                                                                                     | <b>DiPAPs:</b> Waters Acquity UPLC<br><b>Ultra-short-chain:</b> Acquity<br>Ultra Performance Convergence<br>Chromatograph                                                                                                                                                                                                                                                                                                                                                                    | Shimatzu Prominence<br>UFLC system                                                                                                                                                                         |
| LC column +<br>temperature | Ethylene bridged<br>hybrid (BEH)<br>C18 column (1.7<br>$\mu$ m, 50 × 2.1<br>mm, Waters), 50<br>°C                                                                                                                                   | Ethylene bridged<br>hybrid (BEH) C18<br>column (1.7 $\mu$ m, 100<br>× 2.1 mm, Waters),<br>50 °C                                                                                                                                                                            | <b>DiPAPs:</b> Ethylene bridged<br>hybrid (BEH) C18 column (1.7<br>μm, 100 × 2.1 mm, Waters), 50<br>°C<br><b>Ultra-short-chain:</b> SFC Torus<br>DIOL column (1.7 μm, 3.0 x<br>150 mm, Waters), 50 °C                                                                                                                                                                                                                                                                                        | HyPURITY C8 (5<br>μm, 50 x 3 mm,<br>Thermo Scientific),<br>40 °C                                                                                                                                           |
| LC mobile<br>phase         | (A) 95% water<br>and 5%<br>acetonitrile<br>containing 2 mM<br>ammonium<br>acetate, (B) 95%<br>acetonitrile and<br>5% water<br>containing 2 mM<br>ammonium<br>acetate. 0.4<br>mL/min.<br>Gradient from<br>90:10 to 20:80 to<br>0:100 | <ul> <li>(A) 70% water and<br/>30% MeOH</li> <li>containing 2 mM</li> <li>ammonium acetate,</li> <li>(B) 100% MeOH</li> <li>containing 2 mM</li> <li>ammonium acetate.</li> <li>0.3 mL/min. Gradient</li> <li>from 99:1 to 1:99 and</li> <li>return to initial.</li> </ul> | <b>DiPAPs:</b> 2 mM ammonium<br>acetate, 5 mmol/L 1-methyl<br>piperidine in (A) 70% water and<br>30% MeOH, and (B) 100%<br>MeOH. 0.3 mL/min. Gradient<br>from 99:1 to 1:99 and return to<br>initial.<br><b>Ultra-short-chain:</b><br>Supercritical state CO <sub>2</sub> (A) and<br>0.1% NH <sub>4</sub> OH in MeOH (B).,<br>1.2 mL/min.<br>Gradient from 85:15 to 65:35<br>and return to initial. The active<br>back pressure regulator (ABPR)<br>for CO <sub>2</sub> was kept at 1500 psi. | <ul> <li>(A) 100% water containing 2 mM ammonium acetate,</li> <li>(B) 100% MeOH containing 2 mM ammonium acetate.</li> <li>0.4 mL/min. Gradient from 100:0 to 0:100. Equilibration time 2 min.</li> </ul> |
| MS system                  | Waters Xevo<br>TQ-S                                                                                                                                                                                                                 | Waters Xevo TQ-S                                                                                                                                                                                                                                                           | DiPAPs: Waters Xevo TQ-S<br>Ultra-short-chain: Waters<br>Xevo TO-Su                                                                                                                                                                                                                                                                                                                                                                                                                          | SCIEX API 4000                                                                                                                                                                                             |
| Ionisation<br>mode         | ESI-                                                                                                                                                                                                                                | ESI-                                                                                                                                                                                                                                                                       | ESI-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ESI-                                                                                                                                                                                                       |
| Source<br>Conditions       | Desolvation<br>temperatures:<br>150 °C and 350<br>°C; desolvation<br>and cone gas<br>flows (nitrogen):<br>650 L/h and 150<br>L/h, respectively.<br>Capillary<br>voltage: 1.0 kV                                                     | Desolvation<br>temperatures: 150 °C<br>and 350 °C;<br>desolvation and cone<br>gas flows (nitrogen):<br>650 L/h and 150 L/h,<br>respectively.<br>Capillary voltage: 0.7<br>kV                                                                                               | <b>DiPAPs:</b> Same as interlab<br>targets.<br><b>Ultra-short-chain:</b> Desolvation<br>temperatures: 150 °C and 350<br>°C; desolvation and cone gas<br>flows (nitrogen): 650 L/h and 1<br>L/h, respectively. Capillary<br>voltage: 2.0 kV                                                                                                                                                                                                                                                   | The Ion source<br>temperature 600 °C.<br>The Ion Spray<br>voltage was set at 4.0<br>kV.                                                                                                                    |
| Quantification             | Relative<br>response; 9-point<br>calibration curve<br>ranging from<br>0.008 to 150<br>ng/mL (linear,<br>1/x weighting).                                                                                                             | Relative response; 8-<br>point calibration<br>curve ranging from<br>0.02 to 40 ng/mL<br>(linear).                                                                                                                                                                          | <b>DiPAPs:</b> Relative response; 1-<br>point calibration.<br><b>Ultra-short-chain:</b><br>Relative response; a 4-point<br>calibration curve ranging from 2<br>to 50 ng/mL (linear).                                                                                                                                                                                                                                                                                                         | Relative response; 8-<br>point calibration<br>curve ranging from<br>0.088 to 20 ng/mL<br>(linear).                                                                                                         |

**Table S4.** EOF concentrations and precision of EOF analysis of different matrices between laboratories (inter-) and within each laboratory (intra-), presented as the arithmetic mean (Mean; units of ng/L F for water samples, ng/g F for sludge, and ng/mL F for extract) and variation (coefficient of variation; CV) of blank-subtracted concentrations.

|                             | Inter-laboratory |     | Intra-laboratory |     |            |     |           |    |
|-----------------------------|------------------|-----|------------------|-----|------------|-----|-----------|----|
|                             | (n=3)            |     | SU (n=3) ORU     |     | (n=3) IVL/ |     | CZW (n=1) |    |
| Sample type                 | Mean             | CV  | Mean             | CV  | Mean       | CV  | Mean      | CV |
| Groundwater extract (GWext) | 747              | na  | -                | -   | 738        | 4%  | 756       | na |
| Spiked water (UP60)         | 57               | 9%  | 61               | 8%  | 51         | 52% | 59*       | na |
| Spiked water (UP334)        | 297              | 19% | 363              | 26% | 264        | 4%  | 265*      | na |
| Groundwater (GWlow)         | 174              | 36% | 161              | 19% | 118        | 19% | 242       | na |
| Groundwater (GWhigh)        | 2386             | 25% | 1710             | 10% | 2708       | 14% | 2741      | na |
| Effluent water              | 648              | 27% | 445              | 14% | 722        | 15% | 777*      | na |
| Sludge                      | 266              | 43% | 372              | 11% | 145        | 22% | 280       | na |

na=not applicable, \* average of two replicates

**Table S5.** Concentrations (ng/L F) of EOF and PFAS-16 and the calculated fluorine mass balance in ultrapure water (unfortified [UP0], and fortified at 60.2 [UP60] and 334.4 ng/L F [UP334] with a mixture of PFAS), two samples of groundwater (GWlow, GWhigh; both unfortified but known to contain highly contrasting PFAS concentrations), samples of wastewater effluent and sludge (both pooled, unfortified), and a pooled groundwater extract (GWext).

|                                | SU                                                          | ORU                                 | IVL/TZW             |  |
|--------------------------------|-------------------------------------------------------------|-------------------------------------|---------------------|--|
|                                | UPO                                                         | ): 500 mL unfortified ultrapure wa  | ater                |  |
| EOF (blank corrected) (ng/L F) | <lod< td=""><td><lod< td=""><td>4.5</td></lod<></td></lod<> | <lod< td=""><td>4.5</td></lod<>     | 4.5                 |  |
| PFAS_16 (ng/L F)               | 0.1                                                         | 0.2                                 | <lod< td=""></lod<> |  |
| Mass balance (%)               | -                                                           | -                                   | -                   |  |
|                                | UP60: 500                                                   | mL ultrapure water fortified to 6   | 0.2 ng/L F          |  |
| EOF (blank corrected) (ng/L F) | 60.6                                                        | 51.2                                | 59.0                |  |
| PFAS_16 (ng/L F)               | 52.8                                                        | 58.5                                | 51.2                |  |
| Mass balance (%)               | 87.1                                                        | 114.4                               | 86.8                |  |
|                                | UP334: 500                                                  | mL ultrapure water fortified to 3   | 34.4 ng/L F         |  |
| EOF (blank corrected) (ng/L F) | 363.1                                                       | 263.8                               | 265.5               |  |
| PFAS_16 (ng/L F)               | 261.3                                                       | 300.9                               | 254.3               |  |
| Mass balance (%)               | 72.0                                                        | 114.1                               | 95.8                |  |
|                                | GWlo                                                        | w: low-level groundwater (unfort    | ified)              |  |
| EOF (blank corrected) (ng/L F) | 161.5                                                       | 117.6                               | 242.0               |  |
| PFAS_16 (ng/L F)               | 68.0                                                        | 70.1                                | 55.0                |  |
| Mass balance (%)               | 42.1                                                        | 59.6                                | 22.7                |  |
|                                | GWhigh: high-level groundwater (unfortified)                |                                     |                     |  |
| EOF (blank corrected) (ng/L F) | 1710.0                                                      | 2708.0                              | 2741.0              |  |
| PFAS_16 (ng/L F)               | 390.9                                                       | 520.2                               | 388.6               |  |
| Mass balance (%)               | 22.9                                                        | 19.2                                | 14.2                |  |
|                                | Effluent: wastew                                            | vater treatment plant effluent (poo | led, unfortified)   |  |
| EOF (blank corrected) (ng/L F) | 444.9                                                       | 722.0                               | 777.0               |  |
| PFAS_16 (ng/L F)               | 26.5                                                        | 33.9                                | 17.2                |  |
| Mass balance (%)               | 6.0                                                         | 4.7                                 | 2.2                 |  |
|                                | Sludge: wastew                                              | vater treatment plant sludge (pool  | ed, unfortified)    |  |
| EOF (blank corrected) (ng/g F) | 371.8                                                       | 147.6                               | 280.0               |  |
| PFAS_16 (ng/g F)               | 20.4                                                        | 6.9                                 | 22.3                |  |
| Mass balance (%)               | 5.5                                                         | 4.7                                 | 8.0                 |  |

| and applied in anoily growning and strange analysis of       |                      |            |        |      |     |         |      |    |    |
|--------------------------------------------------------------|----------------------|------------|--------|------|-----|---------|------|----|----|
|                                                              | SU                   |            | ORU    |      |     | IVL/TZW |      |    |    |
|                                                              | Mean                 | CV         | n      | Mean | CV  | n       | Mean | CV | n  |
| Instrumental (boat) blank (ng)                               | 2ª<br>5 <sup>b</sup> | 12%<br>28% | 6<br>8 | 10   | 16% | 6       | 2    | 3% | 12 |
| Ultrapure water, 500 mL (UP0) (ng/L)                         | 85°                  | 37%        | 3      | 39   | 18% | 3       | 13   | na | 2  |
| In-house procedural blank, aqueous method(ng/L) <sup>c</sup> | 94°                  | 15%        | 7      | 47   | 59% | 3       | -    | -  | -  |
| In-house procedural blank, sludge method (ng/g)              | 42°                  | 18%        | 3      | 75   | 56% | 3       | -    | -  | -  |

**Table S6.** EOF concentrations in the distributed blank water, and the procedural blanks performed for ultrapure water, groundwater, effluent, and sludge analysis by each laboratory.

na=not applicable, <sup>a</sup>analyzed with sludge samples, <sup>b</sup>analyzed with aqueous samples, <sup>c</sup>Not boat-blank subtracted, only reagents, no ultrapure water

| Target        | GWlow (ng/L) | GWhigh (ng/L) | Effluent (ng/L) | Sludge (ng/g) |
|---------------|--------------|---------------|-----------------|---------------|
| TFAA          | 480          | 1960          | 700             | na            |
| PFPrA         | <31          | 4990          | 42.2            | na            |
| PFBA          | 3.3          | 65.4          | 5.4             | < 0.05        |
| PFPeA         | 3.8          | 122           | 7.6             | <0.1          |
| PFHxA         | 10.1         | 119           | 13.5            | 2.1           |
| PFHpA         | 2.0          | 25.5          | 5.7             | 0.49          |
| PFOA          | 7.0          | 24.1          | 11.9            | 1.2           |
| PFNA          | <0.411       | < 0.397       | 1.5             | 0.37          |
| PFDA          | <0.411       | < 0.397       | 0.602           | 0.89          |
| PFUnDA        | <0.411       | < 0.397       | < 0.062         | 0.84          |
| PFDoDA        | <0.411       | < 0.397       | <0.063          | 0.35          |
| PFTrDA        | <0.411       | < 0.397       | <0.063          | 0.18          |
| PFTDA         | <0.411       | < 0.397       | < 0.063         | <0.25         |
| TFMS          | <20          | 820           | <40             | na            |
| PFEtS         | <20          | <20           | <40             | na            |
| PFPrS         | <20          | <20           | <40             | na            |
| PFBS          | 7.3          | 64.4          | 2.9             | < 0.05        |
| PFHxS         | 60.8         | 198           | 3.1             | <0.1          |
| PFOS          | 35.4         | 356           | 4.7             | 3.6           |
| PFDS          | <0.411       | < 0.397       | <0.058          | 0.70          |
| FOSA          | < 0.411      | < 0.397       | < 0.057         | 0.16          |
| 6:2 FTSA      | <0.411       | 7.0           | 4.6             | <0.1          |
| FOSAA         | na           | na            | na              | 0.30          |
| MeFOSAA       | na           | na            | na              | 3.1           |
| EtFOSAA       | na           | na            | na              | 13.0          |
| 10:2 diPAP    | na           | na            | na              | 20.3          |
| 6:2 diPAP     | na           | na            | na              | 4.1           |
| 8:2 diPAP     | na           | na            | na              | 11.5          |
| diSAmPAP      | na           | na            | na              | 0.5           |
| 6:2/8:2 diPAP | na           | na            | na              | 8.3           |

**Table S7.** Extended target analysis concentrations (recovery-corrected) in groundwater (GWlow and GWhigh), effluent and sludge performed by ORU.

na: not analyzed

|        | SU    | ORU           | IVL/TZW |
|--------|-------|---------------|---------|
| PFBA   | 0.288 | 0.025         | 0.052   |
| PFPeA  | 0.082 | 0.026-0.095   | 0.042   |
| PFHxA  | 0.288 | 0.027         | 0.032   |
| PFHpA  | 0.288 | 0.028         | 0.034   |
| PFOA   | 0.288 | 0.050         | 0.04    |
| PFNA   | 0.288 | 0.028         | 0.067   |
| PFDA   | 0.288 | 0.029         | 0.01    |
| PFUnDA | 0.288 | 0.029         | 0.021   |
| PFDoDA | 0.288 | 0.029         | 0.02    |
| PFTrDA | 0.288 | 0.029         | 0.017   |
| PFTDA  | 0.082 | 0.029, 0.253* | 0.144   |
| PFBS   | 0.254 | 0.023         | 0.01    |
| PFHxS  | 0.272 | 0.050         | 0.016   |
| PFOS   | 0.078 | 0.026         | 0.047   |
| PFDS   | 0.278 | 0.027         | 0.052   |
| FOSA   | 0.292 | 0.026         | 0.01    |

**Table S9.** Limit of quantification (LOQ) for target PFAS-16 (ppb) for the mass balance analysis as reported by the three participants.

\*Elevated reporting limit for sludge only

## **References (numbers harmonized with the manuscript)**

9. Spaan, K. M.; Van Noordenburg, C.; Plassmann, M. M.; Schultes, L.; Shaw, S.; Berger, M.; Heide-Jørgensen, M. P.; Rosing-Asvid, A.; Granquist, S. M.; Dietz, R.Fluorine Mass Balance and Suspect Screening in Marine Mammals from the Northern Hemisphere. Environ. Sci. Technol. 2020, 54 (7), 4046–4058. <u>https://10.1021/acs.est.9b06773</u>.

15. Kaiser, A.-M.; Aro, R.; Kärrman, A.; Weiss, S.; Hartmann, C.; Uhl, M.; Forsthuber, M.; Gundacker, C.; Yeung, L. W. Y. Comparison of Extraction Methods for Per- and Polyfluoroalkyl Substances (PFAS) in Human Serum and Placenta Samples-Insights into Extractable Organic Fluorine (EOF). Anal Bioanal Chem 2021, 413 (3), 865–876. <u>https://doi.org/10.1007/s00216-020-03041-5</u>.

29. Giovanoulis, G.; Nguyen, M. A.; Arwidsson, M.; Langer, S.; Vestergren, R.; Lagerqvist, A. Reduction of Hazardous Chemicals in Swedish Preschool Dust through Article Substitution Actions. Environment International 2019, 130, 104921. https://doi.org/10.1016/j.envint.2019.104921.