## *Electronic supplement to:* Particle characterisation and bioaccessibility of manganese in particulate matter in silico- and ferromanganese smelters

Stine Eriksen Hammer<sup>1</sup>, Torunn Ervik<sup>1\*</sup>, Dag G. Ellingsen<sup>1</sup>, Yngvar Thomassen<sup>1</sup>, Stephan Weinbruch<sup>1,2</sup>, Nathalie Benker<sup>2</sup> and Balazs Berlinger<sup>1a</sup>

<sup>1</sup> National Institute of Occupational Health, Gydasvei 8, 0363 N-Oslo, Norway

<sup>2</sup> Institute of Applied Geosciences, Technical University of Darmstadt, Schnittspahnstrasse 9, D-64287 Darmstadt, Germany

<sup>a</sup> Current address: Soos Research and Development Center, University of Pannonia, Zrinyi Miklos str. 18, H-8800 Nagykanizsa, Hungary

\*Corresponding author: torunn.ervik@stami.no

S-Table 1: ICP-MS operating conditions

|                              | Gamble's matrix                          | Acid matrix |
|------------------------------|------------------------------------------|-------------|
| Sample introduction system   | ISIS Discrete Sampli                     | ng          |
| Tune mode                    | $[O_2]$                                  | -           |
| Scan type                    | MS/MS                                    |             |
| <b>RF Power</b>              | 1550 W                                   |             |
| Sampling depth               | 10 mm                                    |             |
| Carrier gas (As) flow rate   | 1.05 L/min                               |             |
| Gas flow rate (optional gas) | $O_2 - 40 \%$                            |             |
| Sampling cone                | Platinum                                 |             |
| Skimmer cone                 | Platinum                                 |             |
| Nebulizer type               | MicroMist                                |             |
| Spray chamber type           | Quartz, double pass                      | Teflon      |
| Detector mode                | P/A                                      |             |
| Selected isotopes (Q1-Q3)    | <sup>55-71</sup> Mn                      |             |
| Internal standard            | <sup>72-72</sup> Ge, <sup>72-88</sup> Ge |             |



**S-Figure 1:** Total concentrations of Mn in particulate matter as function of particle size. Samples were collected with a 5-stage cascade impactor attached to the breathing zone of tapper and crane operators working in the SiMn or HC-FeMn production in Smelter 1 (top) or HC-FeMn production workers in smelter 2 (bottom).



S-Figure 2: The average number size distributions from SMPS measurements in Smelter 1.



S-Figure 3: STEM-EDX elemental line scan (marked on TEM image) of Mn (pink), Si (blue) and O (yellow).







**S-Figure 4:** Secondary electron (SE) and backscattered electron (BSE) images (upper left and upper right) of a mixed particle consisting of a Mn-O rich region and region containing the typical slag components in SiMn production. Spectrum 1 and 2 shown below are from the bright and dark regions in the BSE image, denoted 1 and 2.





S-Figure 5: Secondary electron (SE) and backscattered electron (BSE) images (upper left and upper right) of a K, Na, Cl rich particle collected on the nanoMOUDI cascade impactor stage 2 ( $d_{ae}$  cut off 5.6 µm). Bright spots in the BSE image are identified as Mn rich regions. A spectrum obtained from the particle is shown below.



S-Figure 6: A particle rich in Mn-Si-Ca-Al-Mg-O, which are all slag components in the HC-FeMn production.