1 2	Supplementary information
3 4	Development of Psychrophilic and Extremely Acidophilic Sulfate-Reducing Bacterial Consortium - A Solution Toward Acid Mine Drainage Treatment in Cold Regions
5 6	Subhabrata Dev ^{a,b*} , Miranda Galey ^c , Chan Lan Chun ^{c,d} , Chad Novotny ^e , Tathagata Ghosh ^b , Srijan Aggarwal ^{a,f*}
7	
8 9	^a Water and Environmental Research Center, University of Alaska Fairbanks, Fairbanks, AK 99775, United States
10 11	^b Mineral Industry Research Laboratory, University of Alaska Fairbanks, Fairbanks, AK 99775, United States
12 13	^c Natural Resources Research Institute, University of Minnesota Duluth, Duluth, MN 55812, United States
14 15	^d Department of Civil Engineering, University of Minnesota Duluth, Duluth, MN 55812, United States
16 17 18 19	^e Teck Resources Limited, Vancouver, BC V6C 0B3, Canada ^f Department of Civil and Environmental Engineering, University of Alaska Fairbanks, Fairbanks, Alaska, 99775, United States
20	
21	
22	
23	Submitted to Environmental Science: Processes and Impacts
24	
25	
26	
27	*Corresponding authors
28 29 30	Subhabrata Dev, 1760 Tanana Loop, University of Alaska Fairbanks, Fairbanks, AK 99775, Email: sdev@alaska.edu,
31 32 33	Srijan Aggarwal, 1764 Tanana Loop, University of Alaska Fairbanks, Fairbanks, AK 99775, Email: saggarwal@alaska.edu
34	
35	

- 36 Table S1. Composition of the nutrient supplements ¹ used for enriching microorganism in the
 37 batch microcosm experiment.

Trace element solution					
Elements	g/L				
FeCl ₂ ,4H ₂ O	1.5				
CoCl ₂ ,6H ₂ O	0.19				
$MnCl_2, 6H_2O$	0.1				
ZnCl ₂	0.07				
H_3BO_3	0.062				
$Na_2MoO_4, 2H_2O$	0.036				
$NiCl_2, 6H_2O$	0.024				
CuCl ₂ , 2H ₂ O	0.017				
The trace element solution should be added as 1mL/L of the medium					

Vitamin mix solution				
Vitamins	g/L			
Biotin	0.001			
Ca-Patothenate	0.001			
4-aminobenzoic acid	0.005			
Pyridoxamine	0.025			
Nicotinic acid	0.01			
Thiamine	0.002			
The vitamin solut	ion should be added as 5 mL/L of the medium			

Vitamin B12 solution					
Vitamin B12 (g/L)	0.005				
The vitamin B12 solution should be added as 1 mL/L of the medium					

Parameters	PL	AMD	
pН	3.3	2.4	
Temperature (°C)	13.7	22.1	
DO (mg/L)	6.8	4.9	
Conductivity (μ S/cm)	3448	19817	
Sulfate (mg/L)	3059 ± 28	36507 ± 709	
Mg (mg/L)	145.2 ± 1.2	1633.4 ± 12.4	
Fe (mg/L)	63.7 ± 1.1	2368.5 ± 36.7	
Al (mg/L)	4.6 ± 0.4	549.6 ± 42.5	
Zn (mg/L)	661.1 ± 0.5	6082.2 ± 24.9	
Mn (mg/L)	33.6 ± 0.3	580.2 ± 2.1	

40 \pm indicates standard deviation.

- 42 Table S3. Changes in pH during the batch microcosm study and stoichiometric total bicarbonate
- 43 production due to glycerol oxidation coupled to sulfate reduction. The stochiometric calculation 44 was performed following the biochemical reaction⁹⁰ coupling sulfate reduction and glycerol
- 45 oxidation.

Stage	Sample	Bicarbonate (mg/L as HCO ₃ -)	Initial pH	Final pH	Change in pH (∆pH)
1	PA	869.13±4.4	4.5	7.4	2.9
	PN	1022.1±1.2	7	8.1	1.1
	AA	601.1±130.1	4.5	7.2	2.6
	AN	507.5±26.5	7	7.6	0.6
2	PAC1	1139.6±25.9	4.5	7.2	2.7
	PAC2	1212.6±40.8	3	7.1	4.1
	PACS1	370.1±15.8	4.5	6.2	1.7
3	PAC1S1	233.9±1.33	4.5	5.3	0.8
	PAC2S1	111.5±4.5	3	3.6	0.6
	PACS2	425.8±3.9	4.5	6.1	1.6

Sample]	Metal removal (%	b)	
-	Ca	Zn	Mg	Mn	Fe
PN	60.9±1	NA*	46.2±0.5	99.5	NA*
PA	90.8±0.05	99.9	81.4±3.2	82.7±2.9	99.9
AA	55.5 ± 0.3	99.9	48.4 ± 0.5	$70.4{\pm}0.1$	99.9
AN	10.6 ± 0.4	NA*	15.2±0.5	88.2±0.1	NA*
PAC1	49.5±0.4	99.9	6.3±1.1	46±1.7	99.9
PAC2	52.3±4.5	99.9	21.1±2.8	67±1.2	99.9

48 *NA=Not applicable

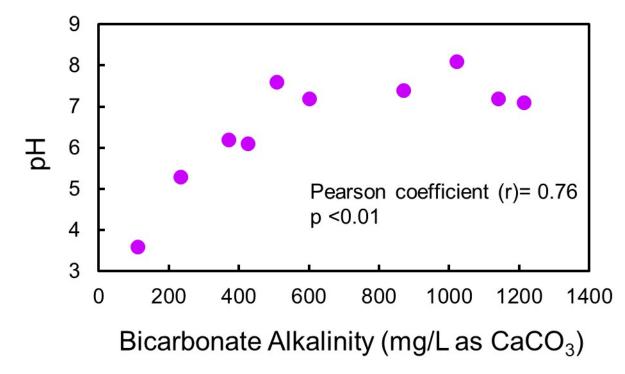
49

50

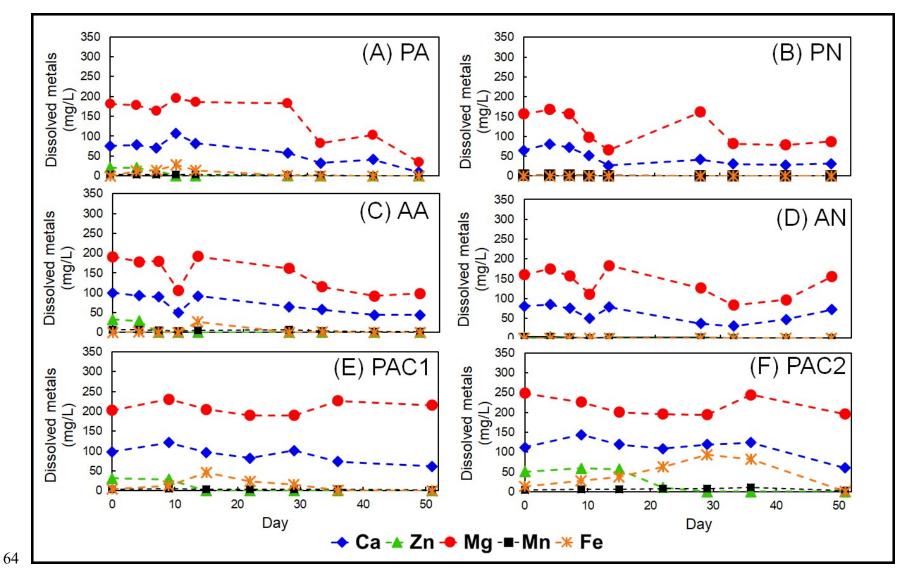
51

51

52


53 Table S5. The richness and diversity of microbial community in PL, different cultures, and

54 subcultures.


Bioreactor	Relative Richness	Shannon (Scaled)	Simpson
PL	1.0	1.63 (0.35)	0.53
PACS1 (day 51)	0.95	2.76 (0.59)	0.85
PACS2 (day 65)	0.64	1.91 (0.45)	0.78
PAC2 (day 25)	0.72	1.87 (0.43)	0.73

- 57 Figure S1. Schematic representation of the enrichment approach of SRB consortium from pit lake
- 58 and AMD location mine sediments.

60 **Figure S2.** Analysis of the Pearson coefficient (r) and p between pH and bicarbonate alkalinity 61 produced during enriching the microbial culture in batch bioreactors at varying pH and 62 temperatures.

65 Figure S3. Profile of residual dissolved metals in the media used for enrichment of SRB community from pit lake sediment.

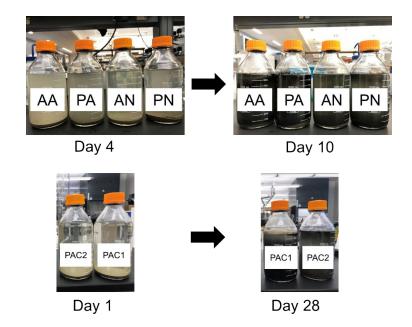
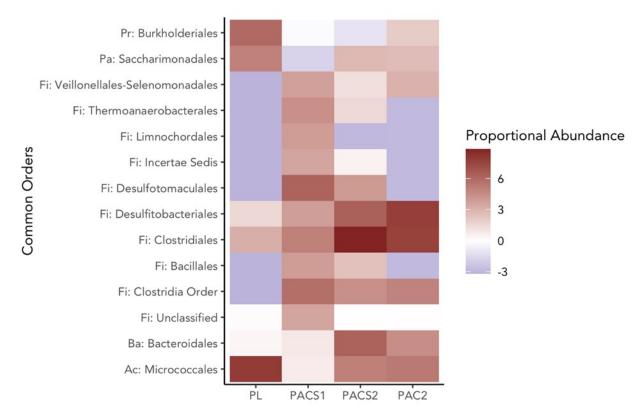
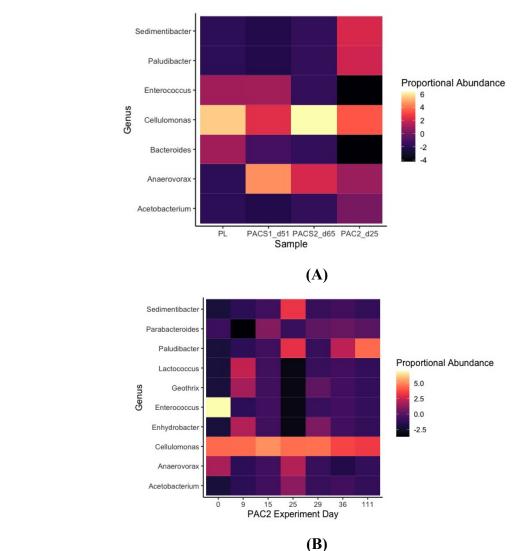




Figure S4. The enrichment of the SRB consortia from sediment. The growth of SRB caused the
 blackening of the media due to the formation of iron sulfide precipitates.

- 72 Figure S5. The Major orders of Bacteria present in samples. Orders are preceded by phylum
- 73 abbreviations: Pr = Proteobacteria, Pa=Patescibacteria, Fi = Firmicutes, Ba=Bacteroidetes,
- 74 Ac=Actinobacteria. Proportional abundances reflect a fold level difference from the geometric
- 75 mean abundance of each sample.

81 different stages (A), and as a function of incubation time in stage one (B).

⁸⁰ Figure S6. Distribution of fermentative bacteria from PL sediments to enriched inoculum through

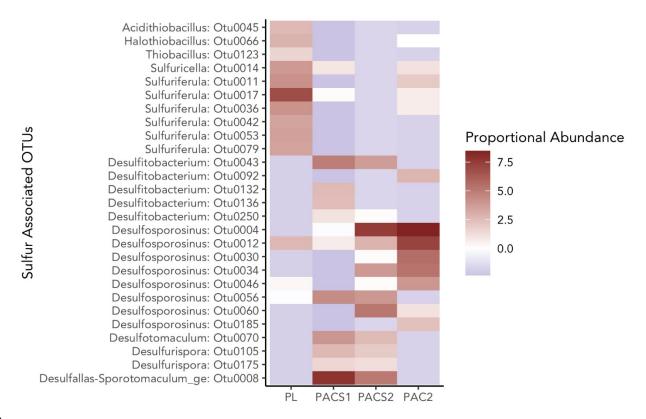


Figure S7. Distribution of the microorganisms involved in the sulfur cycle in PL, PAC2, PACS1,
 and PACS2.

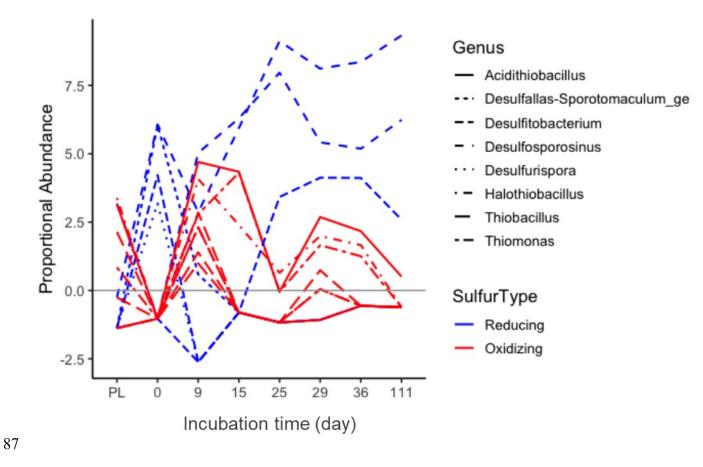
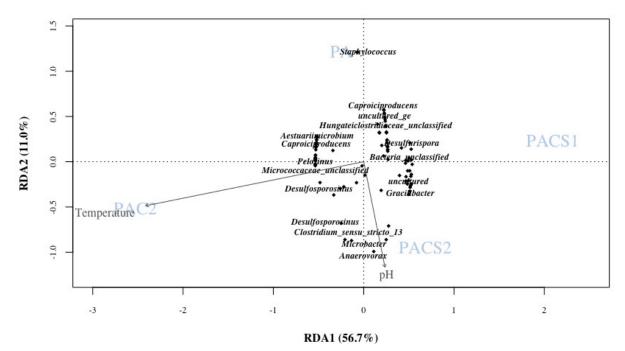



Figure S8. Profile of acidophilic sulfur-oxidizing bacteria and sulfate-reducing bacteria
 throughout the enrichment period in PAC2.

91

Figure S9. Redundancy analysis between initial pH and incubation temperature, and enriched
 microorganisms for all the bioreactors in stage one to three.

95 Reference.

96 1. F. Widdel and N. Pfennig, Archives of Microbiology, 1981, 129, 395-400.