Interaction process between gaseous CH₃I and NaCl particles: implication for iodine dispersion in the atmosphere

Hanaa Houjeij^{a,b}, Anne-Cécile Gregoire^{b*}, Gwenaëlle Le Bourdon^a, Laurent Cantrel^b and Sophie Sobanska^{a*}

^a Institut des Sciences Moléculaires, Université de Bordeaux, UMR CNRS 5255, 33405 Talence Cedex, France

^b Institut de Radioprotection et de Sûreté Nucléaire (IRSN), PSN-RES, SEREX, Laboratoire expérimentation environnement et chimie (L2EC) 13115 St Paul Lez Durance, France

*corresponding authors: sophie.sobanska@u-bordeaux.fr; anne-cecile.gregoire@irsn.fr

Supporting information

Tables of Tables

Table S1 Experimental conditions of the series of experiments performed in this study.

Table S2 The calculated loss of adsorbed CH_3I between exposure phase and static and Ar flow phases (experiment series 2). A is the sum of the area of 1275, 1244, 1220, 1183, 1073 and 1024 cm⁻¹ bands ($\Sigma CH_3Iadsorbed$). A_{exp} denotes the area at the end of exposure phase, Astatic denotes the average area of the last 32 minutes in static phase and A_{Ar} denotes the area at different temperature in Ar flow phase.

Table S3 Determination of the total amount of iodine taken up by NaCl using ICP-MS technique and determination of conversion factor.

Table of Figures

Figure S1 DRIFTS spectra in the 1400-900 cm⁻¹ IR spectral range of NaCl (in black), NaI (in dark yellow) and KBr (in violet) exposed to 1 hour of CH_3I (108mL.min⁻¹, 1000 ppm) continuous flow at 23°C and 1 atm. Bands in blue are adsorbed CH_3I and green are gaseous CH_3I near the surface.

Figure S2 DRIFTS spectra in the deformation (1400-900 cm⁻¹) of NaCl as a function of exposure time of the continuous $CH_{3}I$ (108mL.min⁻¹, 1000 ppm) flow at 23°C and 1 atm. Bands in blue are adsorbed $CH_{3}I$ on NaCl and green are gaseous $CH_{3}I$ near the surface.

Figure S3 DRIFTS spectra of NaCl after 5 hours of CH_3I continuous flow, then under static conditions for 1 hour and finally under 1 hour of continuous Ar flow in the spectral range 1400-900 cm⁻¹. Bands in blue are CH_3I adsorbed on NaCl and in green are gaseous CH_3I near NaCl surface.

Figure S4 DRIFTS spectra of NaCl in the spectral range 1400-900 cm⁻¹ after 1 hour of CH₃I continuous flow, then under static conditions for 4 hours and finally under Ar flow at 23 °C for 1 hour, at 100 °C for 15 minutes, 200 °C for 15 minutes and 400 °C for 15 minutes. Bands in blue are CH₃I adsorbed on NaCl and green are gaseous CH₃I.

Figure S5 Double log curve of rate of $\Sigma CH_3I_{adsorbed}$ versus CH_3I gaseous concentration at 1000, 500 and 200 ppm (experiment series (4).

Theoretical Calculation

The structure of CH₃I monomer was calculated with the Gaussian16 program using the long range corrected functional ω B97X-D with the aug-cc-pVTZ basis set for hydrogen, carbon and oxygen atoms, while the aug-cc-pVTZ-PP basis set was used for the iodine atom that incorporates a small-core relativistic pseudo potential. More details can be found elsewhere ¹.

Tables

Table S1: Experimental conditions of the series of experiments performed in this study.

	Exposure phase				Spontaneous desorption phase (Static condition)	Induced desorption phase (Continuous Ar flow of 108 mL.min ⁻¹)	Activated desorption phase (Continuous Ar flow of 108 mL.min ^{.1})		Repetition	
Salt	Temperature (°C)	[CH₃I] _g (ppm)	CH₃I/Ar flow (mL.min ⁻¹⁾	Duration	Duration	Duration	Duration at 100°C	Duration at 200°C	Duration at 350°C	
Experiment series (1)										
NaCl	23	1000	108/0	5 hours	1 hour	1 hour	0	0	0	3
Experiment series (2)										
NaCl	23	1000	108/0	1 hour	4 hours	1 hour	15 min	15 min	15 min	1
Experiment series (3)										
NaCl	23	500	54/54	5 hours	0	0	0	0	0	2
NaCl	23	200	21/87	5 hours	0	0	0	0	0	1
Experiment series (4)										
Nal	23	1000	108/0	1 hours	0	0	0	0	0	1
KBr	23	1000	108/0	1 hours	0	0	0	0	0	1

Table S2: The calculated loss of adsorbed CH_3I between exposure phase and static and Ar flow phases (experiment series 2). A is the sum of the area of 1275, 1244, 1220, 1183, 1073 and 1024 cm⁻¹ bands ($\Sigma CH_3Iadsorbed$). A_{exp} denotes the area at the end of exposure phase, Astatic denotes the average area of the last 32 minutes in static phase and A_{Ar} denotes the area at different temperature in Ar flow phase.

Spectral Region	Adsorbed CH ₃ I in CH ₃ deformation region					
Band area uncertainty	0.37					
CH ₃ I exposure phase						
Duration	1 hour					
A _{exp} : after 1 hour	0.46 ± 0.37					
Spontaneous desorption phase						
Duration	1 hour					
A _{static} : after 4 hour	0.48 ± 0.37					
Induced and activated desorption phases						
Duration	2 hours					
A _{Ar:} Area at 23°C	0.42 ± 0.37					
A _{Ar:} Area at 100 °C	0.48 ± 0.37					
A _{Ar:} Area at 200 °C	0.39 ± 0.37					

Using ICP-MS to determine the total number of iodine taken up by solid NaCl in mg using [E-S1]:										
m_t (I) in the solution = [I] in ppb × Volume of NaOH (mL) [E-S1]										
Then total mass of iodine taken up by dissolved salt in number of atoms /mg was determined by [E-S2]:										
$m_{i}(l)$ in the solution (ma)										
$m_{t}(s)$ is the last of $m_{t}(s)$ is the last of $m_{t}(s)$ is the set of $m_{t}(s)$ is the	ved (ma) 10-3 Molar m	ass of Iodina 1- col								
$m_t(l)$ in dissolved NaCl = mixtuct dissolved (mg) $\times 10^{-3} \times motal mass of routine [E-S2]$										
The total amount of iodine taken up total NaCl (number of atoms) is then [E-S3]:										
m_t (I) in total NaCl= m_t (I) in dissolved NaCl (number of atoms /mg)× Total m_{NaCl} (mg) [E-S3]										
Experiment series (1) : NaCl exposed to 1000 ppm CH_3I for 5 hours	Repeat 1	Repeat 2	Repeat 3							
Mass of NaCl in the reactor (mg)	150.0	144.2	146.2							
Mass of NaCl (mg) dissolved in NaOH after exposure phase	100.1	100.6	100.3							
Volume of NaOH solution (ml)	10	10	10							
ICP MS results and determination of iodine concentration on NaCl										
Analyse 1 (ppb)	2.94×10 ²	3.48×10 ²	4.33×10 ²							
Analyse2 (ppb)	2.92×10 ²	3.52×10 ²	4.46×10 ²							
Analyse 3 (ppb)	2.80×10 ²	3.42×10 ²	4.25×10 ²							
Average [I] concentration (ppb)	2.88×10 ²	3.47×10 ²	4.34×10 ²							
Total mass of iodine in the NaOH solution (mg)	2.88×10 ⁻³	3.47×10 ⁻³	4.34×10 ⁻³							
Mass of iodine taken up (mg/mg of NaCl)	2.88×10 ⁻⁵	3.45×10 ⁻⁵	4.33×10 ⁻⁵							
Amount of iodine taken up (number of atoms/mg of NaCl)	1.37×10 ¹⁴	1.64×10 ¹⁴	2.05×10 ¹⁴							
Mean of amount of iodine taken up by NaCl (number of atoms/mg of NaCl)		1.69x10 ¹⁴								
Absolute uncertainty interval at 95% confidence level(+/- number of atoms)		8.6x10 ¹³								
Total lodine mass take	n up by the total mass of NaC									
Total mass of iodine taken up by <u>total mass</u> of NaCl (mg)	4.32×10 ⁻³	4.98×10 ⁻³	6.33×10 ⁻³							
Total amount of iodine taken up by <u>total mass of</u> NaCl (number of atoms)	2.05×10 ¹⁶	2.36×10 ¹⁶	3.00×10 ¹⁶							
Absolute uncertainty interval (+/- number of atoms)	1.64×10 ¹⁵	1.89×10 ¹⁵	2.40×10 ¹⁵							
Conversion factor of FTIR ΣCH ₃ I _{adsorbed} band area to number of CH ₃ I absorbed on NaCl										
Σ_{CH3I} Band area – pseudo absorbance (a.u.)	2.085	2.069	2.338							
absolute area uncertainty (+/- surface unit of integrated area)	0.37	0.37	0.37							
Conversion factor (number of I atoms on NaCl/ surface of integrated band)	9.83x10 ¹⁵	1.14x10 ¹⁶	1.28x10 ¹⁶							
Conversion factor absolute uncertainty	1.91x10 ¹⁵	2.24x10 ¹⁵	2.28x10 ¹⁵							
Mean conversion factor		1.14×10 ¹⁶								
Mean conversion factor uncertainty		3.74×10 ¹⁵								

 Table S3: Determination of the total amount of iodine taken up by NaCl using ICP-MS technique and determination of conversion factor.

Figure S1: DRIFTS spectra in the 1400-900 cm⁻¹ IR spectral range of NaCl (in black), NaI (in dark yellow) and KBr (in violet) exposed to 1 hour of CH_3I (108mL.min⁻¹, 1000 ppm) continuous flow at 23°C and 1 atm. Bands in blue are adsorbed CH_3I and green are gaseous CH_3I near the surface.

Figure S2: DRIFTS spectra in the deformation (1400-900 cm⁻¹) of NaCl as a function of exposure time of the continuous CH_3I (108mL.min⁻¹, 1000 ppm) flow at 23°C and 1 atm. Bands in blue are adsorbed CH_3I on NaCl and green are gaseous CH_3I near the surface.

Figure S3: DRIFTS spectra of NaCl after 5 hours of CH_3I continuous flow, then under static conditions for 1 hour and finally under 1 hour of continuous Ar flow in the spectral range 1400-900 cm⁻¹. Bands in blue are CH_3I adsorbed on NaCl and in green are gaseous CH_3I near NaCl surface.

Figure S4: DRIFTS spectra of NaCl in the spectral range 1400-900 cm⁻¹ after 1 hour of CH₃I continuous flow, then under static conditions for 4 hours and finally under Ar flow at 23 °C for 1 hour, at 100 °C for 15 minutes, 200 °C for 15 minutes and 400 °C for 15 minutes. Bands in blue are CH₃I adsorbed on NaCl and green are gaseous CH₃I.

Figure S5: Double log curve of rate of $\Sigma CH_3 I_{adsorbed}$ versus $CH_3 I$ gaseous concentration at 1000, 500 and 200 ppm (experiment series (4).

Reference:

¹ S. Sobanska, H. Houjeij, S. Coussan, C. Aupetit, S. Taamalli, F. Louis, L. Cantrel, A. C. Gregoire and J. Mascetti, Infrared matrixisolation and theoretical studies of interactions between CH₃I and water, *J. Mol. Struct.*, 2021, **1236**, 130342. DOI: 10.1016/j.molstruc.2021.130