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Section S1. Data Source 

Irradiance and cloud coverage data was provided by the National Renewable Energy Laboratory 

in Golden, Colorado.1 Irradiance data was taken from WISER Global and cloud  

coverage from two sources: ASI-16 Sky Imager and TSI Imager (Figure S1). All data provided a 

timestamp (year, day of year, and time in MST). EKO WISER global irradiance was given from 

290 to 1650 nm but the range of interest was from 290 to 700 nm so anything outside of this range 

was discarded from consideration for analysis in the main paper. 

 

Under the All Sky Imager (ASI), two algorithms were used to calculate cloud coverage: BRBG 

and CDOC. The BRBG (blue/red and blue/green) algorithm uses the difference in light scattering 

between clouds and a clear sky to assign a factor of 0 to 1. This algorithm produces one value to 

describe the level of cloud coverage in the sky. The CDOC (cloud detection and opacity 

classification) algorithm identifies clear skies and thin and thick clouds by running across every 

pixel in the image. CDOC employs a clear sky library to achieve this and removes any pixel 

effected by sun glare.2  

 
Figure S1. Webpage screenshot for A) WISER irradiance3, B) Total Sky Imager4, and C) All 

Sky Imager data access.5 
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Section S2. Daily Irradiance Calculations 

Daily irradiance and cloud coverage values were calculated from the merged data set that had 

measurements in 10 minute intervals. However, data was not always available every 10 minutes. 

Therefore, the actual time interval between measurements was calculated using the following 

equation: 

∆t= 
ti+1-ti-1

2
 

(S1) 

The daily cloud cover was calculated by multiplying each measurment by the length of the time 

interval, summing the measurements on a given day, and dividing by the length of the daytime 

measurements using the following equation: 

daily cloud cover= 
∑ (cloud cover ×∆t)day

(tfinal-tinitial+20 min)
 

(S2) 

In contrast, the daily irradiance was calculated by dividing by the length of the entire day using 

the following equation: 

daily irradiance= 
∑ (irradiance ×∆t)day

24 hr
 

(S3) 

The different methods were used to more accurately represent “true” values. There are actual 

values of cloud cover during the night, but these clouds do not impact values of sunlight 

irradiance, which is why the cloud cover day was divided by the time interval that measurements 

were taken. On the other hand, the sunlight irradiance during the night is taken to be zero, but a 

daily irradiance value should reflect the irradiance received during an entire day. 

On some days, the instruments were not all operational and incomplete data was collected. Days 

where <40 measurements were taken were removed from the data set (n = 47 days). The final 

data set had values for 1,084 days (Figure S2). The irradiance values are in good agreement for 

the range of daily irradiance modeled for clear sky days (Table S1). 

Table S1. Range of daily irradiance values measured for the studied irradiance regions: UVB, 

UVA, and PAR. 

Irradiance Regionsn Irradiance (W/m2) 

UVB 0.05-0.6 

UVA 5-20 

PAR 50-160 
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Figure S2. Histograms of daily values calculated after removal of days with <40 measurements. 
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Section S3. Data Transformation and Normalization 

The final data set contained 1) year, 2) day of year, 3) time of day in solar fractional hour, 4) 

BRBG cloud coverage, 5) CDOC cloud coverage, 6) TSI cloud coverage, and 7) respective daily 

irradiances (UVB, UVA, and PAR).  

Solar Time. The NREL spectroradiometer irradiance data listed output in respect to Mountain 

Standard Time (MST), which was converted to solar time based on the year, day of year, and 

watch time. Using the solar time conversion equations from National Oceanic and Atmospheric 

Administration (Figure S3), the local standard meridian time, variation of the local solar time, 

and eccentricity of Earth’s orbit and axial tilt were all accounted for in respect to the 

spectroradiometer location in Colorado.6 The resulting shifts had small deviations from MST 

because Golden, CO fell closely to the local standard meridian time (105o W verse 105.18oW for 

the spectroradiometer location). The solar and watch time generally differed by a maximum of 

±15 minutes and differed a minimum of 0 minutes. 
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Figure S3. Solar time documentation from NOAA used to convert MST observations from 

NREL to solar time.6 
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Cyclical Variables. A cyclical variable is a feature that repeats after several rotations. In this 

data set both day of year and time of day were cyclical variables that had to be transformed to 

improve the accuracy of the model. This was executed by transforming data points for time of 

day (TOD) and day of year (DOY) into a circle that gave every data point within the day or year 

their own unique identifier. This transformation separated every time and day point from one to 

two dimensions by splitting the original value to a cosine and sine value with equations S4 and 

S5, respectfully. The maximum day was 365 or 366 depending on a normal or leap year and 

maximum hour was 24.  

 

𝑆𝑜𝑙𝑎𝑟 𝑇𝑖𝑚𝑒𝑁𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒𝑑 =
sin or cos(2𝜋 ∗ ℎ𝑜𝑢𝑟)

max(ℎ𝑜𝑢𝑟)
 

 

(S4) 

 

 

𝐷𝑎𝑦 𝑜𝑓 𝑌𝑒𝑎𝑟𝑁𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒𝑑 =
sin or cos(2𝜋 ∗ (𝑑𝑎𝑦 + 12))

max (𝑑𝑎𝑦)
 

 

(S5) 

 

The addition of 12 in DOY equation S5 more accurately aligned the values with solstices and 

equinoxes. The final transformed data set was between -1 and 1 and gained no further 

improvements by shifting the data to contain only positive values.  

 

 

  
Figure S4. Transformation of cyclical variables a) time of day, and b) day of year (DOY). Time 

of day is an incomplete circle because measurements were not recorded for irradiance when the 

sun was low on the horizon or it was dark outside. 
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Cloud Coverage. The two imagers used at NREL to quantify cloud coverage and for the 

purpose of this study were the SRRL All-Sky Imager (ASI-16) and the SRRL Total-Sky Imager 

(TSI-880). Both imagers analyzed clouds between zenith angles of 0 to 80 degrees, and therefore 

did not consider clouds low on the horizon. Depending on the model, cloud coverage data was 

normalized as referenced in the main paper.  

 

  

 

Figure S5. Normalized cloud coverage data histogram statistics.  
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Irradiance. The three irradiance types analyzed were UVB (ultraviolet B, 290-315 nm), UVA 

(ultraviolet A, 316-400 nm), and PAR (photosynthetic active radiation, 401 to 700 nm). All 

irradiance data were log10-transformed, and the data was normalized. The log10-transformation 

was used if improvement in the model performance was observed. 

Figure S6. Histogram statistics on irradiance data. Original irradiance data was skewed to the 

right and after logarithmic transformation irradiance data were more normally distributed but did 

skew to the left.  
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Section S4. Multiple Linear Regression Model Development and 

Testing 

Multiple linear regression was performed with MATLAB using transformed and normalized 

data. Input variables were time of day (sine and cosine), day of year (sine and cosine), and 

BRBG, CDOC, or TSI cloud data to predict UVB, UVA, and PAR irradiance (log10 

transformed). The regression was trained on 68% of the NREL data set (training set), which gave 

respective coefficients to solve for irradiance. The validation set, 11% of the data, and the 

remaining 21%, the test set, were then run through the model equations to compare the test 

model prediction with observed irradiance values. Because multiple linear regression does not 

need a validation set, unlike the machine learning models, the validation set ultimately served as 

a second test set. The measured versus the modeled irradiances were plotted for visual 

comparison and the relative root mean square error (rRMSE) was calculated to quantitatively 

summarize prediction error from multiple linear regression to random forest and shallow neural 

networks. The rRMSE values used to compare with the machine learning models came from the 

test set and not the validation set. The rRMSE results helped to determine how useful 

normalization and transformations were to model performance.  
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Section S5. Random Forest Model Development, Algorithm 

Selection, and Optimization 

Initial Optimization. A random forest model consists of a set number of decision trees 

whose results are averaged to determine a final ensemble modeled value. The ensemble method 

can either use least-squares boosting (LSBoost) or bootstrap aggregation (Bag). Each decision 

tree can have a maximum number of branches (number of decision splits) and minimum leaf size 

(number of data points that must be in the final split groups). When LSBoost is used, the learning 

rate can also be set. The values of these hyperparameters affect the performance of the model. 

 

To optimize the model, an initial automated hyperparameter optimization was performed in 

MATLAB to determine a range of reasonable hyperparameter values. Then a grid search was 

used to determine performance over this range using the values in Table S2. 

 

Table S2. Random forest hyperparameter optimization. 

Hyperparameter Grid Search Values 

Ensemble aggregation method LSBoost or Bag 

Minimum leaf size 1, 2, 10, 20, 50 

Maximum number of branches (splits) 50, 100, 300, 500, 800 

Number of trees in ensemble 10, 30, 60, 100, 150, 200, 300, 500 

Learning rate 0.05, 0.1, 0.3, 0.6, 1 

 

Increasing the number of the leaf size, branches, or trees allows for more flexibility in the model 

fitting but does make the model more susceptible to overfitting. To test the performance at each 

of these hyperparameter configurations, the root mean square error (RMSE) of the model 

predicted values and measured values for the validation set were calculated and the R2 of the 

linear regression was determined. Specifically, the first 68% of the time series was used to train 

the model (trained with wavelengths from 290 to 800 nm) and the next 11% was used for model 

performance validation.  

 

Using LSBoost consistently resulted in better model performance (Figures S7-S27). Predictions 

for UVB data were always the most accurate (R2 = 0.72-0.88) compared to UVA (R2 = 0.57-

0.82) and PAR (R2 = 0.47 to 0.76). Using no cloud data resulted in the worst performances (R2 = 

0.47-0.72). Using the TSI cloud data resulted in the overall best performances (R2 = 0.76-0.88 

and rRMSE 25.5-29.3%). The BRBG cloud data also performed well (R2 = 0.76-0.88 and 

rRMSE 26.5-31.0%), and the performance using the CDOC cloud data still improved the model 

but not as much as the other cloud data sources (R2 = 0.74-0.88 and rRMSE 27.7-31.5%). The 

best-performing hyperparameters were similar throughout the model runs but did change slightly 

when modeling different spectral regions and particularly for models where no cloud data was 

included. The higher min leaf size and lower number of max branches probably reduced 

overfitting.  
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Table S3. Random forest optimal parameters initial grid search. 

Optimal Hyperparameters – Initial Grid Search 

Ensemble Min Leaf Size Max Branches Num of Trees Learning Rate 

LSBoost 10, 50 50, 100 30, 60, 100 0.05, 0.1 

 cloud data UVB UVA PAR 

RMSE TSI 0.145 5.31 61.9 

R2 TSI 0.88 0.82 0.76 

 

K-Fold Cross-Validation. To further optimize and validate the random forest models for 

UVB, UVA, and PAR data, K-fold cross-validation with 5 folds was used. The training data set 

was split into 5 chronologically continuous sets so that the predicted results were not influenced 

by the occurrence of neighboring data points in the training and validation sets. The models were 

then re-run with a smaller range of hyperparameters (Figures S7-S27). Cloud data from the 

CDOC algorithm was not re-run as it had the worst performance in the initial grid search.  
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Table S4. Random forest optimal hyperparameters. 

Optimal Hyperparameters – K-Fold Cross-Validation 

NO CLOUD UVB UVA PAR 

Min Leaf Size 60 60 30 

Max Branches 50 50 50 

Num of Trees 70 70 70 

Learning Rate 0.05 0.05 0.05 

R2 0.69 0.56 0.47 

RMSE 0.31±0.09 9.78±1.77 108.2±18.7 

TSI UVB UVA PAR 

Min Leaf Size 60 60 60 

Max Branches 125 125 125 

Num of Trees 130 100 130 

Learning Rate 0.05 0.05 0.05 

R2 0.89 0.84 0.78 

RMSE 0.18±0.04 5.84±0.97 68.3±10.5 

BRBG UVB UVA PAR 

Min Leaf Size 60 60 60 

Max Branches 50 75 75 

Num of Trees 130 100 100 

Learning Rate 0.05 0.05 0.05 

R2 0.87 0.82 0.75 

RMSE 0.19±0.05 6.27±1.36 73.2±15.8 

 

Final Optimization of Random Forest Regression. Although using the TSI data 

(which include values for opaque and non-opaque cloud cover) provided the best performance, 

the random forest modeling using the BRBG data was chosen because it is easier to understand 

the results and had similar performance. The final models used the following parameters because 

they either provided the best performance or 2nd best performance. The final calculation of test 

statistics was calculated using 7 chronologically continuous folds (i.e., 21% of the data was left 

out to calculate the model performance and error calculations). 

Table S5. Random forest final model optimization. 

Parameter Parameter Value 

Min Leaf Size 70 

Max Branches 100 

Num of Trees 120 

Learning Rate 0.05 

 

Table S6. Random forest RMSE and R2 values for irradiance regions (UVB, UVA, and PAR). 

Irradiance Region RMSE (W/m2) (n=7) R2 

UVB 0.192 (0.096 – 0.289) 0.878 (0.839 – 0.911) 

UVA 6.23 (3.92 – 8.90) 0.818 (0.766 – 0.866) 

PAR 73.0 (49.1 – 100.1) 0.756 (0.705 – 0.802) 
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Figure S7. UVB results; no cloud data used 
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Figure S8. UVB results; TSI cloud data used. 
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Figure S9. UVB results; BRBG cloud data used. 
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Figure S10. UVB results; CDOC cloud data used. 
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Figure S11. UVA results; no cloud data used. 
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Figure S12. UVA results; TSI cloud data used. 
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Figure S13. UVA results; BRBG cloud data used. 
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Figure S14. UVA results; CDOC cloud data used. 
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Figure S15. PAR results; no cloud data used. 
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Figure S16. PAR results; TSI cloud data used. 
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Figure S17. PAR results; BRBG cloud data used. 



Page 25 of 60 

 

Figure S18. PAR results; CDOC cloud data used. 
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Figure S19. UVB results; no cloud data used. 

 

Figure S20. UVB results; TSI cloud data used. 
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Figure S21. UVB results; BRBG cloud data used. 

 

Figure S22. UVA results; no cloud data used. 
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Figure S23. UVA results; TSI cloud data used. 

 

Figure S24. UVA results; BRBG cloud data used. 
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Figure S25. PAR results; no cloud data used 

 

Figure S26. PAR results; TSI cloud data used. 
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Figure S27. PAR results; BRBG cloud data used. 
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Section S6. Shallow Artificial Neural Network Model Development, 

Algorithm Selection, and Optimization 

Fundamentals of Shallow Neural Network.  A shallow neural network, as opposed to a 

deep neural network, was chosen because (1) the number of data points (n≈50,000 for training 

and validation) and number of features (n=3-5) was relatively low, and (2) the relationship 

between day of year, time of day, cloud cover, and irradiance was expected to be nonlinear but 

not too complex. The data set was split into chronologically continuous blocks for training (first 

6/7th of data) and validation (last 1/7th of data) to avoid overfitting. The neural network was 

always trained with normalized data to assist in model convergence, and the model was trained 

for as many epochs as required to achieve a consistently low mean squared error. The model was 

trained on irradiance from 290-700 nm. The results from the “best performing” epoch was 

selected automatically as the final training result.  

Initial Optimization.  To begin the optimization of the model hyperparameters, five features 

were used as input where four of the features were the sine and cosine components for day of 

year and time of day (see Section S3 for more details) and the last feature was the cloud cover. 

Up to 3 layers were included in the neural network. Each layer had an equivalent number of 

nodes (aka neurons) that varied between 3 and 30 nodes/layer. The same transfer function was 

used between each layer except the last layer which used the typical linear transfer function. Five 

learning functions were tested to determine any potential differences. 

With the initial grid search, both 1 and 2 layers performed well but the inclusion of a 3rd layer 

seemed to lead to overfitting (Figure S28). Between 15 and 18 nodes/layer performed the best 

when considering all the results from UVB, UVA, and PAR irradiance models. Lastly, the 

Levenberg-Maraquardt learning function resulted in by far the most consistent model 

performance with low RMSE (Figure S28).  

Table S7. SNN model hyperparameters for corresponding initial grid search  

Hyperparameter Grid search values 

number of layers 1, 2, 3 

number of nodes 3, 6, 9, 12, 15, 18, 21, 24, 27, 30 

learning function 1.  Levenberg-Marquardt 

2. BFGS Quasi-Newton 

3. Fletch-Powell Conjugate Gradient 

4. One Step Secant 

5. Scaled Conjugate Gradient 

transfer function 3. positive linear (ReLu) 
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Figure S28. Root mean squared errors for the validation set (1/7th data set from the ~50,000 

observations for training/validation) from the initial grid search to optimize hyperparameters. 

Input data for day of year and time of day was transformed into its sine and cosine components. 

All data was normalized. 
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Further Optimization with Transformed and Non-Transformed Inputs.  In 

further optimization efforts, the use of transformed and non-transformed input features was 

explored as well as other transfer functions (Figures S29-S30). With the transformed data as 

inputs, model performance was similar over all grid search parameters. Arguably, the model 

performance using 1 layer outperformed using 2 layers (Figure S30). However, when non-

transformed data were used as inputs, having 2 layers and a higher number of neurons helped the 

model learn the nonlinear relationship present (Figure S30). Because minimizing data 

manipulation by the user will likely minimize potential errors, the final model was trained with 

non-transformed data using 2 layers. Lastly, the positive linear transfer function, which was 

initially chosen, was found to perform worse when using non-transformed data. Therefore, the 

final model used the hyperbolic tangent sigmoid function, which is the default selection in 

MATLAB. 

Table S8. SNN model hyperparameters for further optimization. 

hyperparameter grid search values 

number of layers 1, 2 

number of nodes 8, 10, 12, 14, 16, 18, 20, 22, 24 

learning function 1.  Levenberg-Marquardt 

transfer function 1. log-sigmoid 

2. hyperbolic tangent sigmoid 

3. positive linear (i.e, ReLU) 

4. saturating linear 
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Figure S29. Root mean squared errors for the validation set (1/7th data set from the ~50,000 

observations for training/validation) from further optimization of the hyperparameters. Input data 

for day of year and time of day was transformed into its sine and cosine components. All data 

was normalized. 
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Figure S30. Root mean squared errors for the validation set (1/7th data set from the ~50,000 

observations for training/validation) from further optimization of the hyperparameters. Input data 

for day of year and time of day was not transformed. All data was normalized. 
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Final Model Parameters. To quantify the expected performance for the validation set, the 

model was trained 50 times. Differences in performance are due to the randomized initial 

weights and data divisions used to train the model. The range of RMSE values calculated is 

narrower than for the random forest model because these values were only calculated on one 

validation set (the last1/7th of the data set from the ~50,000 observations for training/validation).  

 

Table S9. SNN model hyperparameters for further optimization. 

Hyperparameter Grid Search Values 

number of layers 2 

number of nodes 16 

learning function 1.  Levenberg-Marquardt 

transfer function 2. hyperbolic tangent sigmoid 

 

Table S10. SNN model RMSE achieved during further optimization. 

Irradiance Region RMSE (W/m2) (n=50) 

UVB 0.151 (0.149 – 0.153) 

UVA 5.50 (5.45 – 5.56) 

PAR 64.2 (63.7 – 64.7) 
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Figure S31. Histograms for 50 iterations of final model training for the shallow neural network 

(number of layers = 2; 16 nodes/layer; Levenberg-Marquardt learning function; hyperbolic 

tangent sigmoid transfer function for both layers). The top row shows the RMSE for the 

validation set (1/7th of the data set from the ~50,000 observations for training/validation) and the 

bottom row shows the number of epochs taken to get to the best performance. 

  

UVB     UVA                       PAR 
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Section S7. Multiple Linear Regression Model Results 

 

Figure S32. MLR test data set results for measured verse modeled irradiance. The slashed line 

represents the linear regression trend and the solid line is a one to one line (x=y). 
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 Figure S33. MLR results for varying conditions using BRBG cloud coverage. Day 79, 171, 265, 

and 355 are representative of the equinoxes/solstices (Spring, Summer, Fall, and Winter, 

respectively). 
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Section S8. Random Forest Model Results  

 

Figure S34. RF result summary for BRBG cloud cover. The lines are for the seasons; 

yellow=summer, green=fall, blue=winter, and purple=spring. The shaded regions indicate model 

predictions and the average of these is shown with the solid point. 

 
 

Figure S35. RF result ratios for BRBG cloud cover with clear sky day normalization. The lines 

are for the seasons; yellow=summer, green=fall, blue=winter, and purple=spring. The shaded 

regions indicate model predictions and the average of these is shown with the solid point. 
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Figure S36. RF result summary for BRBG day of year. The lines are for the cloud cover; 

purple=0%, yellow=25%, green=50%, blue=75%, and orange=100%. The shaded regions 

indicate model predictions and the average of these is shown with the solid point. 

 

Figure S37. RF result ratios for BRBG day of year. The lines are for the cloud cover; 

yellow=25%, green=50%, blue=75%, and orange=100%. The shaded regions indicate model 

predictions and the average of these is shown with the solid point. 
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Section S9. Neural Network Model Results  

 
Figure S38. NN result summary for BRBG cloud cover. The lines are for the seasons; 

yellow=summer, green=fall, blue=winter, and purple=spring. The shaded regions indicate model 

predictions and the average of these is shown with the solid point. 

 
Figure S39. NN result summary for BRBG cloud cover. The lines are for the seasons; 

yellow=summer, green=fall, blue=winter, and purple=spring. The shaded regions indicate model 

predictions and the average of these is shown with the solid point. 

 
Figure S40. RF result ratios for BRBG day of year. The lines are for the cloud cover; 

yellow=25%, green=50%, blue=75%, and orange=100%. The shaded regions indicate model 

predictions and the average of these is shown with the solid point. 
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Section S10. Modeled Results on Sun-Cloud Position for Irradiance 

Regions 

The neural network model was additionally run with the position of the sun in respect to the 

clouds on top of cloud cover, time of day, and day of year. This variable, referred to as sun flag 

or solar disc, was reported by all sky imager (ASI) software. The software summarized whether 

the sun was not visible, visible on a clear sky day, partly covered, behind the clouds but a bright 

dot was visible, or outside of view due to the solar zenith angle or horizon.7  

Irradiance was modeled over the year at different levels of cloud cover (25, 50, and 75%) for 

varied sun flag summaries (Figure S41). As expected, where the sun was least obstructed by 

clouds was where irradiance was most intense. Addition of the sun flag resulted in moderate 

improvement of model performance. From the original BRBG data, there was a 21-24% 

improvement in model results (UVB, UVA, and PAR). For example, the UVB rRMSE was 

originally 28.3% and with the sun flag it decreased to 22.3%. The sun flag for the TSI data 

improved the rRMSE by 19-22% with the original UVB rRMSE of 27.8% and with the sun flag, 

19.4%. 

Although the sun flag improved the model, the sun flag was ultimately not used for final 

irradiance model prediction as it was not a strong irradiance indicator. This is likely attributed to 

other atmospheric components such as gaseous species and particulate matter  unaccounted for8 

and previous studies have shown that factors like cloud altitude are important. 9Additionally, 

cloud cover percent innately extracts the likelihood that the sun is covered by clouds alone such 

as if it is mostly cloudy, the more likely the sun is to be cloud-covered. Lastly, there were 

inaccurate sun flag definitions; glare on a clear sky day was often interpreted as cloud cover 

(Figure S42). 
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Figure S41. Neural network modeled results for irradiance regions (UVB, UVA, and PAR) as a 

function of cloud cover and sun position in the sky.  
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Figure S42. Neural network irradiance results over a year at increments of cloud cover (0, 25, 

50, 75, 100%) as a function of the sun flag.  
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Section S11. Wavelength Dependence with Neural Network Model 

S11-1. Initial Optimization of Shallow Neural Network for Wavelength-

Dependent Irradiance.  

The neural network was initially optimized by comparing the results for 2 and 3 hidden layers 

and between 8 and 26 nodes for wavelengths from 295 nm to 400 nm (in 5 nm increments). Not 

enough data was present for a viable signal at 290 nm to base the model on. Day of year, time of 

day, and cloud coverage were used as inputs. The cloud data was from the BRBG algorithm, 

which consists of only one value for total cloud cover. All input data was normalized beforehand 

and un-transformed before calculation of the RMSE and relative RMSE.  

The Levenberg-Marquardt learning function and the hyperbolic tangent sigmoid transfer function 

were chosen from the beginning because of their better performance for UVB, UVA, and PAR 

data. The data splitting and validation was the same as previously described. Values for all 

wavelengths were predicted simultaneously. For the initial optimization, this means there were 

22 outputs in the output layer that were predicted. 

 

The results showed a wavelength-dependence for how well the neural network performed 

(Figure S43). Wavelengths of 295 and 300 nm had the highest relative RMSE, but there was a 

quick decline with a minimum at 325 nm. Surprisingly, the rRMSE began to rise again for higher 

wavelengths. 

 
Figure S43. Calculated rRMSE of the validation set as a function of wavelength. The blue lines 

represent the 14 neural network architectures evaluated and the black line is the average of the 14 

lines. 

 

The overall performance of the neural network architecture was evaluated by taking the average 

of the rRMSE values for the 22 wavelengths evaluated. The results showed almost no variation 

when increasing the number of nodes from 8 to 26 or the number of hidden layers from 2 to 3. 
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Therefore, it appears a neural network with only 2 hidden layers and a smaller number of nodes 

is sufficient to model this relationship. 

  
Figure S44. Calculated relative RMSE average over all wavelengths evaluated. The first 7 x-

values are for 2 hidden layers and the rest are for 3 hidden layers. 
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S11-2. Neural Network for Wavelength-Dependent Irradiance  

The final model was trained with 2 hidden layers with 16 nodes each to use the same architecture 

as the neural network models for UVB, UVA, and PAR data. The final output was for 

wavelengths from 290 nm to 550 nm at increments of 2 nm. The model was trained without 

using cloud data (2 inputs: day of year and time of day) and using BRBG total cloud cover (3 

inputs). 

 

Figure S45. Neural network model set-up run on MATLAB; 2 hidden layers with 16 nodes 

(neurons). 

The model error for the final model had similar trends to those observed in model optimization. 

The lowest wavelengths had a substantially higher relative RMSE and the error had a minimum 

around 325 nm. Between 322 nm and 550 nm, the rRMSE slowly increased from 24% to 29%. 

By using the cloud data in the model, the rRMSE decreased by approximately 14 percentage 

points.  

cloud cover data = none 

 

Figure S46. Relative root mean squared error for solar noon wavelengths between 290 and 550 

nm (every 2 nm) for the training set and validation set when using only time of day and day of 

year (no cloud data) to train a neural network with 2 inputs, 2 hidden layers with 16 nodes each, 

and 131 outputs. 
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cloud cover data = BRBG total cloud cover

 

Figure S47. Relative root mean squared error for solar noon wavelengths between 290 and 550 

nm (every 2 nm) when using BRBG total cloud cover to train a neural network with 3 inputs, 2 

hidden layers with 16 nodes each, and 131 outputs. 

  



Page 50 of 60 

S11-3. Results for Wavelength-Dependent Solar Noon Irradiance Neural 

Network  

The modeled results for solar noon are shown in Figure S48-S49 in terms of absolute irradiance 

and as a fraction of the value modeled for clear skies (0% cloud cover). In general, the effect of 

cloud cover on irradiance appears to be independent of wavelength. There are variations in this 

trend below 320 nm. However, because these variations (1) go in both directions, (2) are more 

severe in winter when absolute irradiances are lower, (3) are in the region where the calculated 

rRMSE are higher, and (4) the magnitude of these variations are less than the calculated errors, it 

is likely that this observation is an artefact from imprecise measurements or instrument noise. 
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Figure S48. Modeled irradiance values as a function of wavelength and cloud cover for solar 

noon and eight days of the year (solstices and equinoxes in the right column, the midpoint 

between those days in the left column). 
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Figure S49. Modeled irradiance as a fraction of clear sky values as a function of wavelength and 

cloud cover for solar noon and eight days of the year (solstices and equinoxes in the right 

column, the midpoint between those days in the left column). 
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S11-4. rRMSE Neural Network for Wavelength-Dependent Daily Irradiance  

Consistent with the results for UVB, UVA, and PAR, using values of daily cloud cover and daily 

irradiance resulted in smaller values of rRMSE. The model errors were highest around 300 nm. 

These errors likely stem from the higher instrument noise for lower wavelengths, which means 

wavelengths above 320 nm can be modeled with a higher degree of confidence. The lower values 

of rRMSE for daily irradiance is hypothesized to be caused by the averaging of data which could 

“average out” some of the noise of the measurements. 

 

Figure S50. Relative root mean squared error for daily irradiance prediction for wavelengths 

between 290 and 550 nm (every 2 nm) when using BRBG cloud cover data to train a neural 

network with 2 inputs, 2 hidden layers with 16 nodes each, and 131 outputs. The inputs were day 

of year and the daily average cloud cover and the outputs were daily irradiance in W/m2. 
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S11-5. Model results for Wavelength-Dependent Daily Irradiance Network 

Similar trends were observed for daily irradiances as for solar noon irradiances. There was more 

wavelength-to-wavelength variation for daily irradiances, which may be from the smaller 

number of total observations used to train the model (n=735). Still, the overall trends were very 

similar for solar noon and daily irradiances, which gives us a higher degree of confidence in the 

magnitude of the effect cloud cover can have and that this effect is not wavelength dependent. 
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Figure S51. Modeled daily irradiance values as a function of wavelength and cloud cover and 

eight days of the year (solstices and equinoxes in the right column, the midpoint between those 

days in the left column). 
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Figure S52. Modeled daily irradiance as a fraction of clear sky values as a function of 

wavelength and cloud cover and eight days of the year (solstices and equinoxes in the right 

column, the midpoint between those days in the left column). 
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Figure S53. Modeled daily irradiance as a fraction of clear sky values as a function of cloud 

cover and wavelength for eight days of the year (solstices and equinoxes in the right column, the 

midpoint between those days in the left column). 
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Section S12. Neural Network equations for Solar and Daily 

Irradiance 

Table S11. Equations for daily and solar noon irradiance as a function of cloud cover for 

individual UVB, UVA, and PAR regions and collectively. Variable y is fraction of clear sky 

irradiance and x is percentage of cloud cover in the sky. 

 

 

Table S12. Details about the measurements taken from other cloud irradiance studies compared 

to this work.   

Study Wavelengths 

(nm) 

Spectroradiometer Cloud 

Coverage 

Location Sampling 

Times 

Grant et 

al. (2009) 

[a] 

UVB at 290 

nm (258-320 

nm) 

International Light 

SED240 with UVB 

filter 

Hemispherical 

photographs 

(180o) field of 

view 

40.43N 

West 

Lafayette, 

Indiana 

U.S.A 

 

23 days 

summer, ~6 

runs/day 

Lubin 

and 

Frederick 

(1991) 

[b] 

342.5-347.5 Palmer station 

spectroradiometer 

Naked eye 64.46S 

Antarctic 

Peninsula 

Spring, 700 

sample 

points 

Frederick 

and 

Steele 

(1995) 

[c] 

 

300-380 Eppley black and 

white pyranometer 

NOAA’s data 

summaries for 

O’Hare Intl’ 

airport 

41.88N 

Chicago 

Illinois 

U.S.A 

0900, 1200, 

and 1500 

April-

October 

Ilyas 

(1987) 

[d] 

295-390  Eppley UV 

radiometer 

Unknown 5.2N 

Penang, 

Malaysia 

4 years, 

monthly 

averages 
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Schafer 

et al. 

(1996) 

[e] 

290-320 Brewer MKIV 

spectroradiometer, 

horizontal UV 

irradiance 286.5-

363.0 nm 

Wide angle 

camera 

35.66N 

Black 

Mountain 

NC U.S.A 

February-

July 

Kasten  

(1980) 

[f] 

global Moll-Gorczynski 

pyranometer & 

Schulze net 

pyrradiometer 

Air Weather 

Station at 

Hamburg 

Fuhlsbüttel 

Airport 

(observed 

hourly) 

53.6o N 

Hamburg, 

Germany 

10 years 

(1964-1973), 

25,521 

observations 

Josefsson 

(2000) 

[g] 

global  Kipp & Zonen 

CM1O/CM1 1 

pyranometers10 

Human 

observation, 

nearby airport 

58.6N 

Norrköping, 

Sweden 

March 1983-

Dec 1992, 

hourly 

observations 

(35,000) 

Bais et al. 

(1993)  

[h] 

290-325  Brewer 

spectroradiometer 

Unknown 

(reported 

hourly from 

cities airport) 

40N 

Thessaloniki, 

Greece 

 

Years 

this work 290-700 EKO-WISER 

spectroradiometer 

Yankee Total 

Sky Imager 

Model 880 & 

EKO/CMS-

Schreder All 

Sky Imager 

Model ASI-16 

39.74N 

Golden 

Colorado, 

U.S.A 

October 2017 

to December 

2020, 64,479 

observations 
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