Electronic Supplementary Material (ESI) for Environmental Science: Processes & Impacts. This journal is © The Royal Society of Chemistry 2021

Supplementary Information for:

Concentrations of Halogenated Flame Retardants and Polychlorinated

Biphenyls in house dust from Lagos, Nigeria

Olumide Emmanuel Akinrinade^{1,2}, William A. Stubbings¹, Mohamed Abou-Elwafa

Abdallah¹, Olusegun Ayejuyo², Rose Alani², Stuart Harrad^{1*}

¹School of Geography, Earth, and Environmental Sciences,

University of Birmingham,

Birmingham B15 2TT,

UK

²Department of Chemistry,

University of Lagos,

Lagos,

Nigeria

*Corresponding Author

E-mail address: S.J.Harrad@bham.ac.uk

	Rate (°C / min)	Temperature (°C)	Hold time (min)	Run time (min)
Initial		80	2	2
Ramp 1	20	170	5.5	10
Ramp 2	25	320	10	16

 Table S1a: GC oven temperature program for Brominated Flame Retardants (BFRs)

Table S1b: GC oven temperature program for Polychlorinated Biphenyls (PCBs)

	Rate (°C / min)	Temperature (°C)	Hold time (min)	Run time (min)
Initial		65	0.75	0.75
Ramp 1	20	250	1	11
Ramp 2	5	250	0	13
Ramp 3	30	320	1	16

Table S2a: m/z ions monitored for target BFRs and PCBs

BDEs			NBFRs			PCBs		
BDE 28	405.8	407.8	PBBz	471.6	469.5	PCB 11	222	224
BDE 47	483.7	485.7	PBT	487.7	485.7	PCB 28	255.9	257.9
BDE 100	403.8	405.8	PBEB	499.7	501.7	PCB 52	289.9	291.9
BDE 99	403.8	405.8	HBBz	549.7	547.7	PCB 101	325.9	327.9
BDE 154	483.7	485.7	Syn-DP	271.8	269.8	PCB 118	325.9	327.9
BDE 153	483.7	485.7	Anti-DP	271.8	269.8	PCB 153	359.9	361.9
BDE 183	561.5	563.5	DPDPE	484.6	486.6	PCB 138	359.9	361.9
BDE 209	799.4	801.4				PCB 180	393.8	395.8

Table S2b: Precursor to product ion m/z transitions monitored for HBCDDs

Diastereomer	Ion transition (m/z)
α-, β-, γ-HBCDD	640.6
¹³ C α-, β-, γ-HBCDD	652.4
d ₁₈ γ-HBCDD	657.6 - 78.9

Figure S1: Mobile phase gradient for the analysis of HBCDDs

* Mobile phase A: methanol : water (1:1 v/v) Mobile phase B: methanol

Table S3a: Concentration of PBDEs determined in SRM 2585 (n=10)

	Mean±Std	Cert. value ^a
BDE 28	35.9±4.9	46.9±4.4
BDE 47	508.0±30	498±46
BDE 99	1004.6±97	892±53
BDE 100	175.1±11	145±11
BDE 153	153.9±13	119±1
BDE 154	87.1±9.1	83.5±2.0
BDE 183	39.9±2.6	43.5±3.5
BDE 209	2228.8±310	2510±190

Table S3b: Concentration of PCBs determined in SRM 2585 (*n*=10)

Congener	Mean±Std	Cert. value ^a
PCB 28	12.3±0.9	13.4 ± 0.5
PCB 52	23.8±1.4	21.8 ± 1.9
PCB 101	26.6±1.4	29.8 ± 2.3
PCB 118	26.8±1.6	26.3 ± 1.7
PCB 153	38.0±1.7	40.2 ± 1.8
PCB 138	33.6±2.5	27.6 ± 2.1
PCB 180	17.7±3.2	18.4 ± 3.2

^a Stapleton et al., 2006

DEDa	Internal Standard (IS)	Recovery Determination Standard (RDS)
DFKS	(Concentrations – 500 ng/mL)	(Concentrations – 500 ng/mL)
BDE 28		
BDE 47		
BDE 99		
BDE 100		
PBBz	BDE 77	
HBBz		
PBT		
PBEB		120 DDE 100
BDE 153		$^{13}C = BDE - 100$
BDE 154		
BDE 183	BDE 128	
Anti-DP		
Syn-DP		
BDE-209		
DPDPE	¹³ C - BDE 209	
α-HBCDD	$^{13}C - \alpha$ - HBCDD	
β-HBCDD	$^{13}C - \beta$ - HBCDD	d ₁₈ - γ-HBCDD
γ-HBCDD	$^{13}C - \gamma$ - HBCDD	

Table S4a: Target BFRs and the corresponding Internal standards

Table S4b: Target PCBs and the corresponding Internal standards

PCBs	Internal Standards (Concentrations – 200 ng/mL)	Recovery Determination Standard (Concentrations – 200 ng/mL)
PCB 11	PCB 14	_
PCB 28	PCB 34	PCB 29
PCB 52	PCB 62	
PCB 101	BCP 110	
PCB 118	FCB 119	
PCB 153	DCD 147	PCB 129
PCB 138	- PCB 14/	
PCB 180	PCB 173	

IS	Recoveries
BDE 77	110±11
BDE 128	71±21
¹³ C - BDE 209	72±23
α-HBCDD	76±16
β-HBCDD	68±12
γ-HBCDD	75±25
PCB 14	56±14
PCB 34	67±16
PCB 62	70±11
PCB 119	89±14
PCB 147	82±12
PCB 173	88±15

Table S4c: Recoveries of Internal Standards

 Table S5a: Limits of quantification for target PBDEs

PBDE	LOQ (ng/g)	Detection frequency (%)
BDE 28	0.78	0
BDE 47	0.74	93
BDE 100	0.21	67
BDE 99	0.19	87
BDE 154	0.26	100
BDE 153	0.45	100
BDE 183	0.49	100
BDE 209	16	93

	Concentrations (ng/g)									
Sample #	BDE 28	BDE 47	BDE 100	BDE 99	BDE 154	BDE 153	BDE 183	BDE 209	∑ ₇ BDEs	
1	< 0.78	<1.5	< 0.21	7.7	1.8	2.0	2.6	260	280	
2	< 0.78	2.3	< 0.21	<0.19	0.64	1.5	4.5	290	300	
3	< 0.78	4.8	1.5	7.7	1.8	2.5	3.4	300	320	
4	< 0.78	1.6	1.6	4.3	1.1	2.0	3.1	540	550	
5	< 0.78	6.4	< 0.21	<0.19	4.6	4.6	3.9	280	300	
6	< 0.78	6.2	2.9	13	3.4	4.5	2.2	62	94	
7	< 0.78	6.3	2.0	6.2	0.75	1	8.1	130	150	
8	< 0.78	4.6	1.8	7.5	1.2	6.2	19	500	540	
9	< 0.78	14	< 0.21	11	0.97	1.3	0.71	<16	43	
10	< 0.78	5.5	1.8	6.9	1.7	1.9	3.7	130	150	
11	< 0.78	3.8	< 0.21	5.4	0.89	1.5	3	160	170	
12	< 0.78	2.7	1.4	7.0	1.4	2.1	4	310	330	
13	< 0.78	2.2	1.1	5.4	1.2	1.8	3.1	430	450	
14	< 0.78	5.6	1.5	5	0.89	1.3	4.5	170	190	
15	< 0.78	20	3.1	12	1.2	1.5	2.0	770	810	
Mean	< 0.78	5.8	1.3	6.6	1.6	2.4	4.5	290	310	
Median	< 0.78	4.8	1.5	6.9	1.2	1.9	3.4	280	300	
Range	< 0.78	<1.5 - 20	<0.21 - 3.1	<0.19 - 13	0.64 - 4.6	1-6.2	0.71 - 19	<0.16 - 770	43 - 810	

 Table S5b: Concentrations of target PBDEs

Table S5c: % Composition of each target PBDE congener to $\sum_7 BDEs$

	BDE 47	BDE 100	BDE 99	BDE 154	BDE 153	BDE 183	BDE 209
Mean	4.1	0.6	4.4	0.8	1.2	1.8	87
Median	2.2	0.3	2.4	0.5	0.74	1.5	93
Range	0.3 - 32	0.05 - 3	0.06 - 25	0.2 - 3.6	0.2 - 4.8	0.2 - 5.4	35 - 98

Table S6a: Limits of quantification for target HBCDDs

Isomer	LOQ (ng/g)	Detection frequency (%)
α-HBCDD	5.3	13
β-HBCDD	11	0
γ-HBCDD	2.4	27

	Conc. (ng/g)						
Sample #	a-HBCDD	β-HBCDD	γ-HBCDD				
1	<5.3	<11	7.7				
2	<5.3	<11	<2.4				
3	<5.3	<11	<2.4				
4	37	<11	17				
5	<5.3	<11	19				
6	<5.3	<11	<2.4				
7	<5.3	<11	<2.4				
8	40	<11	26				
9	<5.3	<11	<2.4				
10	<5.3	<11	<2.4				
11	<5.3	<11	<2.4				
12	<5.3	<11	<2.4				
13	<5.3	<11	<2.4				
14	<5.3	<11	<2.4				
15	<5.3	<11	<2.4				
Mean	5.7	<11	5.1				
Median	<5.3	<11	<2.4				
Range	<5.3-40	<11	<2.4-19				

Table S6b: Concentrations of target HBCDDs

Table S6c: f_{α -HBCDD in sample #s 4 and 8

Sample	$f_{\alpha-\mathrm{HBCDD}}$
4	0.69
8	0.61

	LOQ (ng/g)	Detection frequency (%)
PBBz	0.70	6.7
PBT	0.59	33
PBEB	0.71	53
HBBz	0.76	47
Syn-DP	0.10	93
Anti-DP	2.4	87
DBDPE	54	53

 Table S7a:
 Limits of quantitation for target alt-HFRs

Table S7b: Concentrations of target alt-HFRs

Sample	Concentrations (ng/g)							
#	PBBz	PBT	PBEB	HBBz	Syn-DP	Anti-DP	DBDPE	∑7NBFRs
1	< 0.7	< 0.59	0.9	0.76	6.2	25	1400	1400
2	< 0.7	0.7	94	1.05	9.5	53	2400	2600
3	< 0.7	2.2	97	1.4	5.9	< 2.4	< 54	140
4	< 0.7	< 0.59	< 0.71	< 0.76	8.7	68	< 54	110
5	< 0.7	2.5	0.18	< 0.76	18	28	1000	1000
6	< 0.7	< 0.59	< 0.71	< 0.76	26	88	< 54	140
7	< 0.7	< 0.59	< 0.71	< 0.76	0.83	3.2	< 54	34
8	< 0.7	0.69	36	3.5	7.2	21	320	390
9	< 0.7	< 0.59	< 0.71	< 0.76	< 0.1	< 2.4	< 54	32
10	< 0.7	< 0.59	< 0.71	< 0.76	6.9	35	280	320
11	0.89	6.3	170	2.2	9.6	99	< 54	320
12	< 0.7	< 0.59	1.4	1	8.7	22	610	640
13	< 0.7	< 0.59	1.5	1.1	7	27	820	860
14	< 0.7	< 0.59	< 0.71	< 0.76	11	42	180	230
15	< 0.7	< 0.59	< 0.71	< 0.76	11	32	< 54	73
Mean	0.10	0.96	27	0.93	9.1	36	480	560
Median	<0.7	< 0.59	< 0.71	< 0.76	8.7	28	180	320
	<0.7 -	< 0.59 -	< 0.71 -	< 0.76 -	< 0.1 -	< 2.4 -	< 54 -	
Range	0.89	6.3	170	3.5	26	99	2400	32 - 2600

Table S7c: % Composition of each target NBFRs congener to $\sum_7 NBFRs$

	PBBz	PBT	PBEB	HBBz	Syn-DP	Anti-DP	DBDPE
Mean	0.06	0.4	9.4	0.44	4.3	18	68
Median	0.02	0.18	0.31	0.25	2.1	6.5	85
		0.01 -		0.03 -	0.3 –		
Range	0.002 - 0.3	2.0	0.03 - 70	1.1	18	1.5 - 64	9.1 - 98

PCB #	LOQ (ng/g)	Detection frequency
PCB-11	0.19	0
PCB-28	0.31	0
PCB-52	0.49	87
PCB-101	0.32	53
PCB-118	0.29	80
PCB-153	0.46	93
PCB-138	0.57	100
PCB-180	0.27	100

Table S8a: Limits of quantification for target PCBs

Table S8b: Concentrations of target PCBs

	Concentration of PCB # (ng/g)								
Sample #	11	28	52	101	118	153	138	180	∑PCBs
1	< 0.19	< 0.31	1.8	< 0.32	0.59	1.3	4.1	1.5	9.4
2	< 0.19	< 0.31	2.2	0.79	1.3	0.83	2.6	0.97	8.6
3	< 0.19	< 0.31	3.6	0.51	1.4	2.8	8.8	2.2	19
4	< 0.19	< 0.31	2.1	< 0.32	< 0.29	1.2	4.1	0.93	13
5	< 0.19	< 0.31	4.7	1.4	2.1	11	22	9.2	51
6	< 0.19	< 0.31	1.7	< 0.32	< 0.29	0.67	2.3	0.93	5.9
7	< 0.19	< 0.31	2.1	< 0.32	0.39	1.6	3.4	1.7	9.4
8	< 0.19	< 0.31	1.6	1.2	4.2	4.4	18	5.8	35
9	< 0.19	< 0.31	3.8	< 0.32	< 0.29	2.5	5.5	1.7	14
10	< 0.19	< 0.31	0.58	0.68	1.2	< 0.46	0.82	0.27	4.0
11	< 0.19	< 0.31	< 0.49	1.9	1.3	6.5	13	4.2	28
12	< 0.19	< 0.31	4.8	< 0.32	0.62	5.5	15	6.2	32
13	< 0.19	< 0.31	3.9	< 0.32	0.55	2.9	7.5	3.2	18
14	< 0.19	< 0.31	5.7	0.66	1.0	9.9	19	24	61
15	< 0.19	< 0.31	< 0.49	0.63	0.47	4.3	7.7	4.8	18
Mean	<0.19	<0.31	2.8	0.55	1.0	3.7	9.0	4.5	22
Median	<0.19	<0.31	2.1	0.51	0.62	2.8	7.5	2.2	18
Range	<0.19	<0.31	<0.49 – 7.6	<0.32 – 1.9	0.59 - 4.2	<0.46 - 11	0.82 - 22	0.27 - 24	3.8 - 61

PCB #	52	101	118	153	138	180
Mean	17	3.3	6.1	16	40	17
Median	19	2.1	4.1	16	42	17
Range	0-33	0 - 18	0 - 31	7.1 - 24	22 - 51	7.1 - 40

Table S8c: % Composition of each target PCB congener to ∑PCBs

Reference

Stapleton, H. M., Harner, T., Shoeib, M., Keller, J. M., Schantz, M. M., Leigh, S. D., Wise, S. A., 2006. Determination of polybrominated diphenyl ethers in indoor dust standard reference materials. Analytical and Bioanalytical Chemistry 384, 791 – 800. https://doi.org/10.1007/s00216-005-0227-y.