Electronic Supporting Information

Linking biodegradation kinetics, microbial composition and test temperature - testing 40 petroleum hydrocarbons using inocula collected in winter and summer

Karina Knudsmark Sjøholm¹*, Arnaud Dechesne¹, Delina Lyon², David M.V. Saunders^{2,3}, Heidi Birch¹, and Philipp Mayer¹

¹Department of Environmental Engineering, Technical University of Denmark, DK-2800 Kongens Lyngby, Denmark

²Member of Concawe, B-1160 Brussels, Belgium

³Shell Health, Shell International B.V. 2596 HR The Hague, The Netherlands

*Corresponding author

Content:

ESI1: Method descriptions for inoculum characterization parametersp.ESI3
Table ESI2: Petroleum hydrocarbons tested, structure, retention time, quantifier, qualifier m/z's, air-water partitioning coefficients and initial test concentration
ESI3: Microbial community analysis and qPCRp.ESI9
Figure ESI4. Biodegradation kinetics from all test temperatures (2.7, 12 and 20°C). Modelled with first order decay with lag-phasep.ESI11
Figure ESI5: Biodegradation kinetics obtained from all test temperatures (2.7, 12 and 20°C). Modelled with logistic model (eq.3)p.ESI15
Table ESI6: Table including all biodegradation kinetics parameters obtained with Gudenaasummer inoculum at 2.7 °Cp.ESI19
Table ESI7: Table including all biodegradation kinetics parameters obtained with Gudenaasummer inoculum at 12 °Cp.ESI21
Table ESI8: Table including all biodegradation kinetics parameters obtained with Gudenaasummer inoculum at 20 °C
Table ESI9: Biodegradation kinetics parameters obtained by the logistic model for the GudenaaSummer sample tested at 12 and 20°C
Figure ESI10: $DegT_{50}$ obtained with the first order model with lag-phase vs $DegT_{50}$ obtained with the logistic model
<i>Figure ESI11:k at 12°C plotted against T_{lag} and k obtained at 20°Cp.ESI27</i>
Figure ESI12: Degradation half times (DegT ₅₀) (days) of selected compounds versus test temperature
Table ESI13: qPCR data for Gudenaa Winter inoculum, and during incubationp.ESI29
Table ESI14: qPCR data for Gudenaa Summer inoculum, and during incubationp.ESI30
Figure ESI15: The most abundant sequences at 2.7 and 12°C across all samplesp.ESI31
Figure ESI16: Sequences more abundant in the presence of chemicals compared to without chemicals
ESI17: Abundance of two genera only observed in the presence of chemicalsp.ESI33
References

ESI1: Method descriptions for inoculum characterization parameters.

Onsite parameters: temperature (°C), O_2 (mg/L), pH, and conductivity (μ S/cm) was measured using a Hach HQ40D portable pH and dissolved oxygen meter.

Colony forming units (CFU) was measured on R2A agar following the DS/EN ISO 8199 protocol (Dansk Standard 2018).

Total dissolved solids (TDS) (mg/L) and, total suspended solids (TSS) (mg/L) were analyzed following the DS/EN 872:2005 protocol (Dansk Standard, 2005), and non-volatile organic carbon (NVOC) (mg/L) was measured by internally method.

 $PO_4^{3-}(\mu g/L)$, $NO^{3-}(\mu g/L)$, $NH_3(\mu g/L)$ and $NO_x(\mu g/L)$ were analyzed using segmented flow analysis (San++ System, Skalar Analytical BV, The Netherlands.)

ESI2: Petroleum hydrocarbons tested, structure, retention time, quantifier, qualifier m/z's, air-water partitioning coefficients and initial concentrations.

						Qual	<i>V</i> *	Initial
#	Name	Cas#	Structure	Rt, mins	Quant. m/z	m/z	L/L	μg/L**
1	Benzene	71-43-2		7.04	78	77	0.23	200
2	Ethylcyclopentane	1640-89-7	CH ₃	10.31	69	68	14	4
2		109.09.2	CH3	12.14	01	02	0.28	100
3	loluene	108-88-3		12.14	91	92	0.28	100
4	2,4-Dimethylheptane	2213-23-2	H ₃ C CH ₃ CH ₃ CH ₃	15.34	43	85	170	0.2
5	2.5-Dimethylheptane	2216-30-0	H ₃ C CH ₃ CH ₃ C CH ₃	16.09	57	43	170	0.2
			н,с сн,					
6	2,3-Dimethylheptane	3074-71-3	сн,	17.22	43	84	18	0.2
7	Ethylbenzene	100-41-4		17.42	91	106	0.33	20
			Н3С СН3					
8	<i>p</i> -Xylene	106-42-3		17.88	91	106	0.29	20

9	<i>m</i> -Xylene	108-38-3	H ₃ C	17.96	91	106	0.30	20
			H ₃ C					
10	o-Xylene	95-47-6	н₃с∽ ∽∽	19.01	91	106	0.22	20
			н,ссн,					
11	3,5-Dimethyloctane	15869-93-9		20.43	57	43	220	0.06
12	Cumene	08 82 8	H ₃ C	20.49	105	120	0.48	3
12		50-02-0	H _s C CH-	20.49	105	120	0.40	
13	3,3-Dimethyloctane	4110-44-5	H ₃ C CH ₃	21.02	71	43	220	0.06
14	<i>n</i> -Propylbenzene	103-65-1	СН ₃	21.83	91	120	0.44	3
15	1.2.4-Trimethylbenzene	95-63-6	H _a C CH _a	22.14	105	120	0.13	8
15		95-05-0	CH3	22.14	105	120	0.15	0
16	4-Ethyltoluene	622-96-8	Снз	22.28	105	120	0.21	4
			СН ³					
17	1,2,3-Trimethylbenzene	526-73-8		22.50	105	120	0.18	-
			CH3 CH3					
18	1-Ethyl-2-methyltoluene	611-14-3		22.87	105	120	0.23	4

			CH ₃					
19	1,3,5-Trimethylbenzene	108-67-8	H _a C	23.52	105	120	0.36	4
	· · · ·		CH ₃					
20	1-Ethyl-3-methyltoluene	620-14-4	CH3	24.60	105	120	0.36	4
21	Indane	496-11-7		25.14	117	118	0.01	8
	D . 1		CH3	0.5.01	01	0.2	0.66	
22	<i>n</i> -Butylbenzene	104-51-8		25.91	91	92	0.66	0.9
23	1,2-Diethylbenzene	135-01-3	н ³ с — Сн ³	26.00	105	119	0.11	1
24	1.4 Disthulhanzana	105 05 5	H ₃ C CH ₃	25.00	110	105	0.21	1
4	1,4-Diethylbenzene	103-03-3	CI CI	23.99	119	105	0.51	1
25	Hexachloroethane	67-72-1		26.70	117	119	0.10	2 ^b
26	Decalin	91-17-8		27.77	138	96	20	0.3
			CH ₃ H ₃ C					
27	Durene	95-93-2	CH ₃	28.04	119	134	0.33	1
			CH ₃ CH ₃					
28	Isodurene	527-53-7		28.16	119	134	0.33	1

29	Tetralin	119-64-2		29.68	104	132	<0.01ª	10
30	Naphthalene	91-20-3		30.45	128	102	0.02	8
			CH3					
31	2-Methylnaphthalene	91-57-6		33.80	142	141	0.02	3
-								
32	Bicyclohexyl	92-51-3		34.16	82	166	4.0	0.09
			CH ₃					
33	1-Methylnaphthalene	90-12-0		34.27	142	141	0.02	2
			сн, сн, сн,					
34	2.6.10-Trimethyldodecane	3891-98-3	н,с СН,	35.67	57	71	2700	_
				55.07	57	/1	2700	
								-
35	Biphenyl	92-52-4	сп ₃	36.14	154	153	0.01	2
			СН3					
36	1,2-Dimethylnaphthalene	573-98-8		38.15	156	141	0.01	5
-								
27	a a Dutuldaaslin	02260 80 7	сн₃	28.40	127	01	<0.01a	
5/		92309-80-7		38.49	13/	81	<0.01"	-
38	9,10-Dihydroanthracene	613-31-0		43.45	180	179	0.01	5 ^b

			n, c~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~					
39	Dihexyl disulphide	10496-15-8		43.80	150	234	0.86	-
			н,с					
40	2,6-Diisopropylnaphthalene	24157-81-1	CH,	44.27	197	155	0.08	-
41	Dibenzothionhene	132-65-0		45.03	184	139	0.001	4
12	Dhenanthrane	85.01.8		45.51	178	176	0.002	3 b
72		05-01-0		45.51	170	170	0.002	5
43	Dodecylbenzene	123-01-3	н,с~)	46.74	92	91	12	<0.001
44	3-Phenyl-1,1'-bi(cyclohexane)	33460-02-5		48.63	91	242	0.22	-
45	Iso-octane	540-84-1		_	_	_	_	0.01

*Calculated from K_H (20°C) obtained from EpiSuite ¹. **Calculated from amount loaded into silicone and silicone water partition ratios found in the UFZ_LSER database:

<u>https://www.ufz.de/index.php?en=31698&contentonly=1&m=0&lserd_data[mvc]=Public/start</u>. "-": no silicone water partition ratios were found in the database.

^aCalculated from K_H (25°C) obtained from EpiSuite¹.

^bCalculated from a methanol silicone partition ratio of 3² and silicone water partition ratios found in the UFZ_LSER database.

Cell filtering

The inocula were filtered within 24 hrs of sampling the river water. All equipment was first sterilized with ethanol and cleaned by filtering ultrapure water. A 150 mL ultrapure water sample was filtered as a negative control, then triplicate 150 mL river water were filtered. The samples were filtered through a sterile cellulose nitrate filter (0.2 μ m, diameter 47 mm) using vacuum suction. The filters were handled at all times with metal tweezers. After filtration, the filters were packed separately in aluminum foil and frozen to -80^oC. The filters were sent frozen to DNASense, Aalborg, Denmark for DNA extraction and microbial community analysis using 16S rRNA gene amplicon sequencing using Illumina MiSeq³.

DNA extraction, library preparation and sequencing & qPCR

For the Gudenaa Winter samples, all samples yielded >2 ng/ μ L (extract) and based on gel electrophoresis the majority of the DNA was >5000 bp, which is recommended for amplicon sequencing. Library preparation for the16S rRNA gene (V4 region) was successful for all samples and yielded between 15134 and 78711 reads after QC and bioinformatic processing. The blank samples revealed a much lower diversity than the rest of the samples, similar to the extraction negative and PCR negative.

For the Gudenaa Summer samples, DNA extraction yielded concentrations $<2 \text{ ng/}\mu\text{L}$ (extract) for all samples except sample 12°C, 15 days replicate 3. Gel electrophoresis showed that most of the extracted DNA was long fragments. Library preparation was successful for all samples and yielded between 13324 and 77892 reads after QC and bioinformatics processing. The blank samples revealed a much lower diversity than the rest of the samples, similar to the extraction negative and PCR negative.

The abundance of 16S rRNA genes per ng of isolated DNA was estimated based on the broad-range qPCR probe and primer set ⁴. A linearized plasmid containing the qPCR amplicon was used to create the standard curve. Briefly, the forward (5'-TCCTACGGGAGGCAGCAGT-3') and reverse (5'-GGACTACCAGGGTATCTAATCCTGTT-3') primers were used to amplify the qPCR amplicon of from E. coli MG1655 using the AccuPrime Pfx DNA polymerase (Thermo Scientific). The PCR was carried out according to the manufacturers recommendations. The PCR product was purified on an E-gel Clone ell gel (Thermo Scientific) and cloned into the pCR4-TOPO vector using the TOPOTA CloningKit for Sequencing (Thermo Scientific) according to the manufactures recommendations. The obtained plasmid subsequently linearized with FastDigest NcoI (Fermentas), blunted using the Klenow fragment (Fermentas). The concentration of the amplicon stock was determined using the Qubit HS dsDNA assaykit (Life Technologies) and the copy number then calculated based on the molecular weight of the

linerized plasmid. The amplicon stock was diluted to 108 copies/ μ L in 10 mM tris buffer (pH 8.5) and stored as aliquots at -18°C.

Sample qPCR measurements were done in technical duplicates using the Mx3005P qPCR system (Stratagene) and theEXPRESS qPCR Supermix (Life Technologies). Reactions of 24 μ L were prepared according to manufacturer's instruction using 50 nM ROX, 500 nM of each primer, 200 nM hydrolysis probe (6-FAM)-5'-CGTATTACCGCGGCTGCTGGCAC- 3'- (BHQ-1) and 1 μ L template DNA. The qPCR reaction conditions were as follows: UDG incubation (50°C, 2 min) and PCR activation (95 °C, 2 min) followed by 45 cycles of denaturation (95 °C, 15 s) and combined annealing and extension (60 °C, 1 min). Amplicon standards with concentrations ranging from 103-107 copies/ μ L were included for all qPCR runs and used for quantification. A clear logarithmic correlation was found between amplicon concentration and the Cq value (R2 > 0.99) and the efficiency of the qPCR was acceptable (> 90 %). All primers and probes were HPLC purified (DNA Technology, Denmark).

Figure ESI4. Biodegradation kinetics from all test temperatures (2.7, 12 and 20°C). Modelled with first order decay with lag-phase.

Figure ESI4: Biodegradation kinetics curves for incubation temperatures 2.7 (blue triangles & dotted line), 12 (green circles & dashed line) and 20°C (red squares & solid line) obtained with Gudenaa Summer inoculum (sampling temperature 17°C). Modelled with first order decay model with lag-phase (eq.2).

Figure ESI5: Biodegradation kinetics obtained from all test temperatures (2.7, 12 and 20°C). Modelled with logistic model (eq.3).

Figure ESI5: Biodegradation kinetics curves for incubation temperatures 2.7 (blue triangles & dotted line), 12 (green circles & dashed line) and 20°C (red squares & solid line) obtained with Gudenaa Summer inoculum (sampling temperature 17°C). Modelled with logistic model (eq.3).

Table ESI6: Table including all biodegradation kinetics parameters obtained with Gudenaa summer inoculum at 2.7 °C. First order model. Degradation time (DegT50 = $T_{lag} + T_{1/2}$) is included for model fit, $R^2 > 0.7$. When $R^2 < 0.7$, DegT50 is provided as < measured time point after T_{1/2}. Biodegradation rate (k) and half-life (T_{1/2}) is provided for data set where $R^2 > 0.7$ and at least two measured points during the visual degradation phase on the curve. No deg.: no degradation observed during 28 days test period; lim.deg. limited degradation observed and incon.data: inconsistent data. Uncertainties on DegT50 are calculated as T_{lag} + 95% CI for T_{1/2} and are given in brackets. Parameters obtained with the first order decay model (eq.2). *Test substances with* $K_{aw} > 1$ at 20°C are included in italic.

Gudenaa 17°C													
Test temperature 2.7°C													
			959	% CI		95%	6 CI		959	% CI		Lim	its*
Compound	R ²	T _{lag} , d	lower	upper	k, d⁻¹	lower	upper	t½, d	lower	Upper	DegT50, d	Lower	Upper
Benzene											No deg.		
Ethylcyclopentane											No deg.		
Toluene											No deg.		
2,4-Dimethylheptane											No deg.		
2,5-Dimethylheptane No deg. No deg.													
,3- Dimethylheptane Lim.deg.													
Ethylbenzene	thylbenzene No deg.												
-Xylene No deg. No deg.													
m-Xylene											No deg.		
o-Xylene											No deg.		
3,5-Dimethyloctane											No deg.		
Cumene											No deg.		
3,3-Dimethyloctane											Lim.deg.		
n-Propylbenzene											No deg.		
1,2,4-Trimethylbenzene											No deg.		
4-Ethyltoluene											No deg.		
1,2,3-Trimethylbenzene											No deg.		
1-Ethyl-2-methyltoluene											No deg.		
1,3,5-Trimethylbenzene											No deg.		
1-Ethyl-3-methyltoluene											No deg.		
Indane											No deg.		
n-butylbenzene											No deg.		
1,2(1,4)-Diethylbenzene											No deg.		
Hexachloroethane											No deg.		
Decalin											No deg.		

					Guden	aa 17°C							
	Test temperature 2.7°C												
			95%	% CI		95%	% CI		959	% CI		Lim	its*
Compound	R ²	T _{lag} , d	lower	upper	k, d ⁻¹	lower	upper	t½, d	lower	Upper	DegT50, d	Lower	Upper
Durene											No deg.		
Isodurene											No deg.		
Tetralin											No deg.		
Naphthalene											No deg.		
2-Methylnaphthalene											No deg.		
Bicyclohexyl											Incons.data		
1-Methylnaphthalene											No deg.		
2,6,10-Trimethyldodecane	0.83	7.1	3.7	8.8	0.254	0.12	0.571	2.73	1.2	8.5	9.95	8.34	12.88
Biphenyl											No deg.		
1,2-dimethylnaphthalene											No deg.		
Butyldecalin											No deg.		
9,10-Dihydroanthracene											No deg.		
Dihexyl disulphide		_									No deg.		
2,6-Diisopropylnaphthalene											Lim.deg.		
Dibenzothiophene											No deg.		
Phenanthrene											No deg.		
3-Phenyl-1,1'-bi(cyclohexane)											Incon.data		

Table ESI7: Table including all biodegradation kinetics parameters obtained with Gudenaa summer inoculum at 12 °C. First order model. Degradation time (DegT50 = $T_{lag} + T_{1/2}$) is included for model fit, $R^2 > 0.7$. When $R^2 < 0.7$, DegT50 is provided as < measured time point after T_{1/2}. Biodegradation rate (k) and half-life (T_{1/2}) is provided for data set where $R^2 > 0.7$ and at least two measured points during the visual degradation phase on the curve. No deg.: no degradation observed during 28 days test period; lim.deg. limited degradation observed and incon.data: inconsistent data. Uncertainties on DegT50 are calculated as T_{lag} + 95% CI for T_{1/2} and are given in brackets. Parameters obtained with the first order decay model. *Test substances with K_{aw}>1 at 20°C are included in italic*.

Gudenaa 17°C													
				Te	est tempe	rature 12	2°C						
			95%	6 CI		95%	<u>6 CI</u>		959	% CI		Lim	its*
Compound	R ²	T _{lag} , d	lower	upper	k, d⁻¹	lower	upper	t½, d	lower	Upper	DegT50, d	Lower	Upper
Benzene	0.87	6.5	3.0	-	1.97	-	-	0.35	-	-	6.84	6.5	6.5
Ethylcyclopentane	0.79	14.1	10.0	-	0.11	0.06	0.19	6.29	3.58	11.7	20.4	17.7	25.9
Toluene	0.92	6.2	3.0	-	1.75	0.29	-	0.40	-	2.39	6.63	6.2	8.6
2,4-Dimethylheptane	0.84	14.6	12.4	-	0.52	0.17	-	1.34	-	4.18	15.9	14.6	18.7
2,5-Dimethylheptane	0.79	14.2	9.5	-	0.62	0.11	-	1.12	-	6.09	15.3	14.2	20.3
2,3- Dimethylheptane 0.82 14.1 9.9 - 0.52 0.13 - 1.34 - 5.19 15.5 14.1 19.3													
Ethylbenzene 0.94 3.6 2.8 - 0.32 0.23 0.45 2.15 1.53 2.98 5.71 5.1 6.5													
p-Xylene	0.95	6.7	5.0	-	1.77	0.41	-	0.39	-	1.71	7.08	6.7	8.4
m-Xylene	0.90	3.9	2.9	-	0.27	0.19	-	2.61	-	3.75	6.48	3.9	7.6
o-Xylene	0.95	6.8	5.3	-	1.98	0.42	-	0.35	-	1.63	7.12	6.8	8.4
3,5-Dimethyloctane	0.82	14.2	10.3	-	0.53	0.14	-	1.32	-	5.11	15.6	14.2	19.4
Cumene	0.95	6.9	6.4	-	1.74	0.56	-	0.40	-	1.24	7.33	6.9	8.2
3,3-Dimethyloctane	0.73	6.2	0.4	-	0.10	0.05	0.17	6.96	4.11	14.3	13.1	10.3	20.5
n-Propylbenzene	0.90	3.9	2.9	-	0.26	0.18	-	2.70	-	3.88	6.60	3.9	7.8
1,2,4-Trimethylbenzene	0.96	6.8	5.8	-	1.66	0.50	-	0.42	-	1.39	7.19	6.8	8.2
4-Ethyltoluene	0.97	6.8	6.2	-	1.71	0.58	-	0.41	-	1.19	7.25	6.8	8.0
1,2,3-Trimethylbenzene	0.97	6.9	6.5	-	1.77	0.62	-	0.39	-	1.13	7.32	6.9	8.1
1-Ethyl-2-methyltoluene	0.97	6.9	6.5	-	1.85	0.61	-	0.37	-	1.13	7.31	6.9	8.1
1,3,5-Trimethylbenzene	0.96	6.7	5.6	-	1.67	0.48	-	0.41	-	1.44	7.13	6.7	8.2
1-Ethyl-3-methyltoluene	0.97	7.0	6.7	-	1.79	0.67	-	0.39	-	1.03	7.36	7.0	8.0
Indane	0.97	6.9	6.5	-	1.84	0.65	-	0.38	-	1.07	7.29	6.9	8.0
n-butylbenzene	0.95	6.8	6.2	-	1.42	0.52	-	0.49	-	1.32	7.32	6.8	8.2
1,2(1,4)-Diethylbenzene	0.96	6.9	6.4	-	1.35	0.55	-	0.51	-	1.26	7.40	6.9	8.2
Hexachloroethane								Limite	d degrad	lation			
Decalin	0.73	13.5	8.4	-	0.10	0.05	0.19	6.79	3.62	13.8	20.3	17.1	27.3

Gudenaa 17°C													
				Те	est tempe	rature 12	2°C						
			95%	6 CI		95%	6 CI		95%	% CI		Lim	its*
Compound	R ²	T _{lag} , d	lower	upper	k, d⁻¹	lower	upper	t½, d	lower	Upper	DegT50, d	Lower	Upper
Durene	0.97	7.0	6.6	-	1.58	0.65	-	0.44	-	1.07	7.39	7.0	8.0
Isodurene	0.97	6.9	6.6	-	1.64	0.66	-	0.42	-	1.05	7.37	6.9	8.0
Tetralin	0.99	7.0	6.8	-	1.87	0.79	-	0.37	-	0.88	7.36	7.0	7.9
Naphthalene	0.98	6.7	6.2	-	1.56	0.66	-	0.45	-	1.05	7.18	6.7	7.8
2-Methylnaphthalene	0.99	<u>0.99</u> <u>6.6</u> <u>5.9</u> <u>-</u> <u>1.41</u> <u>0.63</u> <u>-</u> <u>0.49</u> <u>-</u> <u>1.10</u> <u>7.10</u> <u>6.6</u> <u>7.7</u>											
Bicyclohexyl	0.85	0.85 0.9 0 2.0 0.16 0.11 0.24 4.24 2.94 6.16 5.15 3.8 7.1											
1-Methylnaphthalene	0.99	6.7	6.1	-	1.48	0.66	-	0.47	-	1.05	7.15	6.7	7.7
2,6,10-Trimethyldodecane	0.85	1.0	0.8	-	0.42	0.30	-	1.65	-	2.25	2.65	1.0	3.2
Biphenyl	0.98	6.6	5.9	-	1.42	0.59	-	0.49	-	1.17	7.13	6.6	7.8
1,2-dimethylnaphthalene	0.98	6.5	5.2	-	1.41	0.50	-	0.49	-	1.39	6.96	6.5	7.9
Butyldecalin											>31		
9,10-Dihydroanthracene	0.98	6.7	6.2	-	1.42	0.62	-	0.49	-	1.11	7.22	6.7	7.8
Dihexyl disulphide							Invalio	d					
2,6-Diisopropylnaphthalene	Limited degradation												
Dibenzothiophene	0.99 6.4 5.8 - 1.16 0.63 - 0.60 - 1.10 7.00 6.4 7.5												
Phenanthrene	0.99	6.2	5.3	-	1.10	0.57	-	0.63	-	1.21	6.86	6.2	7.4
3-Phenyl-1,1´-bi(cyclohexane)	clohexane) 0.90 1.0 0.9 - 0.72 0.44 - 0.96 - 1.58 1.96 1.0 2.6												

Table ESI8: Table including all biodegradation kinetics parameters obtained with Gudenaa summer inoculum at 20 °C. First order model. Degradation time (DegT50 = $T_{lag} + T_{1/2}$) is included for model fit, $R^2 > 0.7$. When $R^2 < 0.7$, DegT50 is provided as < measured time point after T_{1/2}. Biodegradation rate (k) and half-life (T_{1/2}) is provided for data set where $R^2 > 0.7$ and at least two measured points during the visual degradation phase on the curve. No deg.: no degradation observed during 28 days test period; lim.deg. limited degradation observed and incon.data: inconsistent data. Uncertainties on DegT50 are calculated as T_{lag} + 95% CI for T_{1/2} and are given in brackets. Parameters obtained with the first order decay model. *Test substances with K_{aw}>1 at 20°C are included in italic*.

Gudenaa 17°C													
Test temperature 20°C													
			95%	6 CI		95%	6 CI		95%	% CI		Lim	its*
Compound	R ²	T _{lag} , d	lower	upper	k, d ⁻¹	lower	upper	t½, d	lower	Upper	DegT50, d	Lower	Upper
Benzene	0.86	3.00	-	-	2.70	-	-	0.25	-	-	3.25	-	-
Ethylcyclopentane	0.74	10.36	4.43	-	0.24	0.07	-	2.93	-	9.40	13.29	10.36	19.76
Toluene	0.92	2.54	2.44	-	1.78	1.22	2.62	0.39	0.26	0.57	2.93	2.81	3.11
2,4-Dimethylheptane	0.77	7.91	4.68	-	0.35	0.13	-	1.96	-	5.43	9.87	7.91	13.34
2,5-Dimethylheptane	0.80	7.25	4.13	-	0.36	0.14	-	1.91	-	4.93	9.16	7.25	12.18
2,3- Dimethylheptane 0.80 7.15 3.27 - 0.33 0.13 - 2.08 - 5.53 9.23 7.1												7.15	12.68
Ethylbenzene	0.90	2.45	2.20	2.57	1.11	0.70	1.68	0.62	0.41	0.99	3.07	2.86	3.44
p-Xylene	0.91	3.08	2.27	-	2.27	0.49	-	0.31	-	1.41	3.39	3.08	4.49
m-Xylene	0.98	3.21	3.00	-	2.36	0.83	-	0.29	-	0.83	3.50	3.21	4.04
o-Xylene	0.91	3.16	2.49	-	2.39	0.53	-	0.29	-	1.32	3.45	3.16	4.48
3,5-Dimethyloctane	0.79	7.52	3.67	8.63	0.36	0.13	-	1.92	-	5.49	9.44	7.52	13.00
Cumene	0.97	3.25	3.10	-	1.98	0.78	-	0.35	-	0.89	3.60	3.25	4.14
3,3-Dimethyloctane	0.73	5.26	1.48	-	0.21	0.09	-	3.31	-	7.31	8.57	5.26	12.58
n-Propylbenzene	0.97	3.07	2.57	-	1.98	0.68	-	0.35	-	1.01	3.42	3.07	4.09
1,2,4-Trimethylbenzene	0.95	3.20	2.90	-	2.14	0.68	-	0.32	-	1.02	3.53	3.20	4.22
4-Ethyltoluene	0.98	3.21	3.04	-	2.11	0.86	-	0.33	-	0.81	3.54	3.21	4.02
1,2,3-Trimethylbenzene	0.00	3.30	3.23	-	1.59	0.80	-	0.44	-	0.87	3.74		-
1-Ethyl-2-methyltoluene	0.97	3.25	3.09	-	2.25	0.80	-	0.31	-	0.86	3.56	3.25	4.11
1,3,5-Trimethylbenzene	0.94	3.15	2.65	-	2.18	0.62	-	0.32	-	1.12	3.47	3.15	4.26
1-Ethyl-3-methyltoluene	0.97	3.30	3.22	-	1.60	0.79	-	0.43	-	0.87	3.73	3.30	4.13
Indane	0.97	3.24	3.07	-	2.28	0.81	-	0.30	-	0.85	3.54	3.24	4.09
n-butylbenzene	0.96	3.17	2.85	-	1.84	0.67	-	0.38	-	1.03	3.55	3.17	4.20
1,2(1,4)-Diethylbenzene	0.96	3.28	3.14	-	1.62	0.71	-	0.43	-	0.98	3.71	3.28	4.26
Hexachloroethane	0.64	12.45	8.48	22.07	0.06	0.03	0.11	12.30	6.30	22.58	24.75	18.75	35.03

Gudenaa 17°C														
			95%	% CI		95%	6 CI		95%	6 CI		Lim	its*	
Compound	R ²	T _{lag} , d	lower	upper	k, d ⁻¹	lower	upper	t½, d	lower	Upper	DegT50, d	Lower	Upper	
Decalin	0.81	10.06	5.95	11.54	0.21	0.09	0.57	3.26	1.23	7.63	13.32	11.29	17.69	
Durene	0.97	3.30	3.21	-	1.51	0.75	-	0.46	-	0.93	3.76	3.30	4.18	
Isodurene	0.98	3.30	3.24	-	2.09	0.92	-	0.33	-	0.75	3.63	3.30	4.05	
Tetralin	0.98	3.28	3.19	-	2.29	0.89	-	0.30	-	0.78	3.58	3.28	4.06	
Naphthalene	0.96	<u>5 3.21 2.97 - 2.03 0.72 - 0.34 - 0.96 3.55 3.21 4.17</u>												
2-Methylnaphthalene	0.97	7 3.19 2.97 - 1.90 0.76 - 0.37 - 0.92 3.56 3.19 4.11												
Bicyclohexyl	0.90	1.49	0.58	2.07	0.35	0.24	0.56	1.97	1.23	2.89	3.47	2.73	4.38	
1-Methylnaphthalene	0.97	3.26	3.13	-	2.03	0.82	-	0.34	-	0.85	3.60	3.26	4.10	
2,6,10-Trimethyldodecane	0.71	2.31	1.81	-	3.55	1.45	-	0.20	-	0.48	2.51	2.31	2.79	
Biphenyl	0.97	3.22	3.00	-	2.09	0.76	-	0.33	-	0.92	3.55	3.22	4.13	
1,2-dimethylnaphthalene	0.97	3.26	3.14	-	2.11	0.81	-	0.33	-	0.86	3.59	3.26	4.12	
Butyldecalin	0.76	1.36	-1.33	2.82	0.12	0.08	0.19	5.69	3.72	8.85	7.05	5.08	10.21	
9,10-Dihydroanthracene	0.96	3.02	2.36	-	1.66	0.54	-	0.42	-	1.29	3.44	3.02	4.31	
Dihexyl disulphide							Incons.	data						
2,6-Diisopropylnaphthalene	Incons.data													
Dibenzothiophene	0.98	3.21	3.06	-	1.73	0.82	-	0.40	-	0.84	3.61	3.21	4.05	
Phenanthrene	0.98	3.23	3.09	-	1.71	0.81	-	0.40	-	0.85	3.63	3.23	4.08	
3-Phenyl-1,1'-bi(cyclohexane)	0.91	3.25 3.65 1.77 1.82 1.28 2.61 0.38 0.27 0.54 1.77 1.65 1.93												

Gudenaa	12ºC		20°C	
Compound	R ²	DegT ₅₀	R ²	DegT ₅₀
Benzene	0.88	6.4	0.86	3.3
Ethylcyclopentane	0.80	21.6	0.75	13.8
Toluene	0.92	6.0	0.92	3.1
2,4-Dimethylheptane	0.84	16.5	0.77	10.4
2,5-Dimethylheptane	0.79		0.80	9.5
2,3- Dimethylheptane	0.82	15.9	0.80	9.5
Ethylbenzene	0.95	6.5	0.90	3.2
p-Xylene	0.95	7.0	0.91	3.4
m-Xylene	0.95	7.4	0.98	3.9
o-Xylene	0.95	7.2	0.91	3.5
3,5-Dimethyloctane	0.82	15.8	0.78	9.8
Cumene	0.95	7.7	0.97	
3,3-Dimethyloctane	0.80	14.5	0.72	8.8
n-Propylbenzene	0.96	7.5	0.97	3.4
1,2,4-Trimethylbenzene	0.96	7.3	0.95	3.7
4-Ethyltoluene	0.97	7.5	0.98	
1,2,3-Trimethylbenzene	0.97	7.6	0.98	
1-Ethyl-2-methyltoluene	0.97	7.6	0.97	
1,3,5-Trimethylbenzene	0.96	7.2	0.94	3.7
1-Ethyl-3-methyltoluene	0.97		0.97	
Indane	0.97		0.97	4.1
n-butylbenzene	0.95	7.6	0.96	
1,2(1,4)-Diethylbenzene	0.96	7.7	0.96	
Hexachloroethane				
Decalin	0.76	21.6	0.82	13.8
Durene	0.97	7.7	0.97	
Isodurene	0.97	7.7	0.98	4.6
Tetralin	0.99		0.98	4.2
Naphthalene	0.98		0.96	3.8
2-Methylnaphthalene	0.99		0.97	3.7
Bicyclohexyl	0.83		0.89	2.3
1-Methylnaphthalene	0.99		0.97	4.0
2,6,10-Trimethyldodecane	0.87		0.71	2.5
Biphenyl	0.98		0.97	4.0
1,2-dimethylnaphthalene	0.98		0.97	4.1
Butyldecalin			0.75	1.3
9,10-Dihydroanthracene	0.98		0.96	3.5
Dihexyl disulphide				
2,6-Diisopropylnaphthalene				
Dibenzothiophene	0.99		0.98	4.1
Phenanthrene	0.99		0.98	4.2
3-Phenyl-1,1'-				
bi(cyclohexane)	0.72		0.71	1.6

Table ESI9: Biodegradation kinetics parameters obtained by the logistic model for the Gudenaa Summer sample tested at 12 and 20°C. Compounds with $K_{aw}>1$ are included in italic.

Figure ESI10: $DegT_{50}$ obtained with the first order model with lag-phase vs $DegT_{50}$ obtained with the logistic model.

Figure ESI12: Degradation half times ($DegT_{50}$) (days) of selected compounds versus test temperature for Gudenaa Winter (closed circles),⁵ Gudenaa Summer (open triangles) and Danube inoculum (grey squares).⁵ Agreement with Arrhenius is indicated by a linear relationship (semi-log plot).

Sample ID	Extracted DNA Conc. [ng/uL]	Prokaryotic concentration estimated from 16S rRNA qPCR [copies/uL]	Number of Reads after sequencing, QC	Obs. number of ASVs	Faith's Phylogenetic Diversity
Inoculum_1	3.9	1945000	16624	183	34.5
Inoculum_2	4.1	2813000	29353	256	47.8
Inoculum_3	3.9	1845500	38230	355	66.6
D15,2.7°C_1	19.1	19465000	26252	90	13.8
D15,2.7°C_2	14.1	13640000	11084	61	11.8
D15,2.7°C_3	23.1	42070000	35302	111	17.3
D15,12°C_1	5.2	4987500	40904	232	53.6
D15,12°C_2	7.3	3855500	67038	355	57.9
D15,12°C_3	4.4	3412000	29446	220	39.9

Table ESI13: qPCR data for Gudenaa Winter inoculum, and during incubation (D15 = day 15)

D15,20°C_1	3.7	1780000	29607	262	48.4
D15,20°C_2	6.8	3527000	44546	435	69.1
D15,20°C_3	< 2	609350	41431	370	65.2
D15,20°C wo chem_1	< 2	420850	35918	434	79.9
D15,20°C wo chem_2	2.6	854350	34426	332	63.9
D15,20°C wo chem_3	2.1	673150	26885	346	63.4
Blank 1	< 2	Below			
		detection limit	7709	76	18.4
Blank 2	< 2	Below			
		detection limit	7407	67	14.2

Table ESI14: qPCR data for Gudenaa Summer inoculum, and during incubation (D15 = day 15)

Sample ID	Extracted DNA Conc. [ng/uL]	Prokaryotic concentration estimated from 16S rRNA qPCR [copies/uL]	Number of Reads after sequencing, QC	Obs. number of ASVs	Faith's Phylogenetic Diversity
Inoculum_1	< 2	32295	43955	406	64.5
Inoculum_2	< 2	3197.5	46720	441	66.1
Inoculum_3	< 2	Below detection limit	47520	270	36.5
D15,2.7°C_1	< 2	3015.5	38813	141	31.5
D15,2.7°C_2	< 2	199100	64302	162	45.9
D15,2.7°C_3	< 2	43215	54292	172	36.9
D15,12°C_1	< 2	68200	57385	246	50.6
D15,12°C_2	< 2	12625	44979	228	52.4
D15,12°C_3	2	1153000	66232	270	52.6
D15,20°C_1	< 2	4906.5	42672	374	61.9
D15,20°C_2	< 2	Below detection limit	36185	231	42.5
D15,20°C_3	< 2	16085	65164	448	63.5

D15,20°C wo chem_1	< 2	2769.5	41130	479	73.4
D15,20°C wo chem_2	< 2	Below detection limit	48662	222	40.8
D15,20°C wo chem_3	< 2	Below detection limit	44950	205	40.0
Blank 1	< 2	Below detection limit	15487	30	7.2
Blank 2	< 2	Below detection limit	11102	26	5.3
Blank 3	< 2	Below detection limit	44951	131	21.2

Figure ESI15: The 15 most abundant sequences at 2.7 and 12°C across all samples.

ESI16:

Figure ESI16: Sequences more abundant in the presence of chemicals compared to without chemicals.

ESI17: Abundance of two genera only observed in the presence of chemicals.

References:

- 1 US EPA, 2021.
- 2 K. E. C. Smith, N. Dom, R. Blust and P. Mayer, *Aquat. Toxicol.*, 2010, **98**, 15–24.
- 3 M. Albertsen, S. M. Karst, A. S. Ziegler, R. H. Kirkegaard and H. Nielsen, , DOI:10.1371/journal.pone.0132783.
- 4 M. A. Nadkarni, F. E. Martin, N. A. Jacques and N. Hunter, *Microbiology*, 2002, **148**, 257–266.
- 5 K. K. Sjøholm, H. Birch, R. Hammershøj, D. M. V. Saunders, A. Dechesne, A. P. Loibner and P. Mayer, *Environ. Sci. Technol.*, 2021, **55**, xxxx–xxxx.