Electronic Supplementary Material (ESI) for Environmental Science: Processes & Impacts. This journal is © The Royal Society of Chemistry 2021

Supporting Information

Electrochemistry-Coupled to Liquid Chromatography-Mass Spectrometry-Density Functional Theory as New Tool to Mimic the Environmental Degradation of Selected Phenylurea Herbicides

Ranil Clément Tonleu Temgoua ^{a,b,c}*, Ugo Bussy ^d, Dimitri Alvarez-Dorta ^a, Nicolas Galland ^a, Evangeline Njanja ^c, Julie Hémez ^a, Christine Thobie-Gautier ^a, Ignas Kenfack Tonlé ^c and Mohammed Boujtita ^a

^aUniversité de Nantes, CNRS, CEISAM UMR 6230, F-44000 Nantes, France

^b University of Yaoundé I, Higher Teacher Training College, P.O Box 47, Yaoundé, Cameroon

^cUniversity of Dschang, Electrochemistry and Chemistry of Materials, Department of Chemistry, Dschang, Cameroon

^dMichigan State University, Department of Fisheries and Wildlife, 293 Farm Lane East Lansing, MI, 22101, USA. Current address: Mars Incorporated, 6885 Elm St, McLean, VA, 22101, USA

Corresponding author: raniltemgoua@yahoo.fr / ranil.temgoua@univ-nantes.fr

LC-HRMS² (Liquid Chromatography High Resolution Tandem Mass Spectrometry) analyses

LC-HRMS² experiments were performed with a collision energy ramping from 10 to 40 V. Mass traces were extracted for each targeted molecule with an absolute window of 0.01 Da, and data were processed using *MassLynx* 4.1 software (Waters).

The fitting of the theoretical isotopic distribution with experimental data was particularly helpful to structural elucidation, because of the presence of chlorine in some parent molecules and some of the degradation products.

The analysis of thio-adducts demonstrates losses of neutral molecules such as γ -glu-ala-gly (-274), glycine (-75), glutamine (-145) as well as pyroglutamic acid (-130), which are characteristics of MSMS fragmentation of a glutathione adduct in positive ionization mode.

1- HRMS² fragmentation of *m*/*z* 181.09, 179.08, 197.09 and 486.17 ions [M+H]⁺ attributed to the oxidation products of **FENU** and for the GSH adduct of quinone imine (QI).

Figure S1. HRMS² spectrum of OPF₁, OPF₂, OPF₃ and GAQIF

2- HRMS² fragmentation of *m*/*z* 181.09, 179.08, 215.05 and 520.12 ions [M+H]⁺ attributed to the oxidation products of **MONU** and for the GSH adduct of quinone imine (QI).

Figure S2. HRMS² spectrum of OPMu₁, OPMu₂, OPMu₃ and GAQIMu

3- HRMS² fragmentation of *m*/*z* 181.09, 223.14, 221.12, 205.13 and 528.21 ions [M+H]⁺ attributed to the oxidation products of **ISO** and for the GSH adduct of quinone imine (QI).

Figure S3. HRMS² spectrum of OPI₁, OPI₂, OPI₃, OPI₄, OPI₅ and GAQII₂

4- HRMS² fragmentation of *m*/*z* 215.06, 229.07, 211.06 and 534.14 ions [M+H]⁺ attributed to the oxidation products of **CHLORTO** and for the GSH adduct of quinone imine (QI).

Figure S4. HRMS² spectrum of OPC₁, OPC₂, OPC₃ and GAQIC₁

5- HRMS² fragmentation of m/z 215.05, 213.04, 520.12 and 550.13 ions [M+H]⁺ attributed to the oxidation products of **METOX** and for the GSH adduct of quinone imine (QI).

Figure S5. HRMS² spectrum of OPMx₁, OPMx₂, GAQIMx₁ and GAQIMx₂

6- HRMS² fragmentation of *m*/*z* 197.09, 502.16, 231.05 and 536.12 ions [M+H]⁺ attributed to the oxidation products of **MONO** and for the GSH adduct of quinone imine (QI).

Figure S6. HRMS² spectrum of OPMo₁, OPMo₃, GAQIMo₁ and GAQIMo₂

7- HRMS² fragmentation of *m*/*z* 231.05 and 570.08 ions [M+H]⁺ attributed to the oxidation products of **LINU** and for the GSH adduct of quinone imine (QI).

Figure S7. HRMS² spectrum of OPL₁ and GAQIL₁