1

Supplementary Information

Review of ecotoxicological studies of widely used polystyrene nanoparticles

Egle Kelpsiene ^{1,3}, Mikael T. Ekvall ^{2,3}, Martin Lundqvist ^{1,3}, Oscar Torstensson¹, Jing Hua ¹

and Tommy Cedervall^{1,3}

¹Department of Biochemistry and Structural Biology, Lund University, Lund University, P.O. Box 118, SE-221 00 Lund, Sweden

² Aquatic Ecology Unit, Department of Biology, Ecology Building, Lund University, SE-223
62 Lund, Sweden

³ NanoLund, Lund University, Box 118, SE-221 00 Lund, Sweden

*Corresponding author. e-mail: egle.kelpsiene@biochemistry.lu.se

List of abbreviations

SDS - Sodium dodecyl sulfate

- EC₅₀ half maximal effective concentration
- PTA/NTA Particle tracking analysis or nanoparticle tracking analysis
- DLS Dynamic light scattering
- SLS Static light scattering
- ELS Electrophoretic light scattering
- TEM Transmission electron microscopy
- SEM Scanning electron microscope
- DCS Differential centrifugal sedimentation

UV-vis – Ultraviolet visible spectroscopy

SAXS – Small-angle x-ray scattering

Study subject	Polystyrene nanoparticles size (nm)		Concentration (mg/L; unless stated differently)							
	Before adding to the test media, detection method(s) performed in the pure water, unless stated differently, particle surface modification	After adding to the test media, detection method(s)	Before and after adding to the test media; (nominal, unless stated differently)	After adding to the test media, detection method(s)	Exposure duration	<i>If</i> and <i>how</i> polystyrene nanoparticle suspension were cleaned?	Other measured parameters of the test media and/or polystyrene nanoparticles	The main outcome	Polystyrene nanoparticles supplier	Ref.
Daphnia magna	70 TEM, surface modification not specified	Not mentioned	0.22 – 150	Not mentioned	21 d	No, because sodium dodecyl sulfate concentration was below toxicity threshold	pH; Temperature; Light-dark period; Oxygen concentration; Conductivity	Reduction in body size and neonates at 0.22 mg/L; Malformations at 30 mg/L	Synthesized at AVT-PCC, Wageningen UR	1
D. magna	100 DLS, -NH ₂	150-250, DLS	0.1 - 1000	Not mentioned	24 h	No comments	pH; Temperature	Increased mortality at 1 mg/L	Obtained from a previous FP7 project (QualityNano)	2
D. magna	26 DLS, ELS, SEM, -COOH	347 and 436, DLS, ELS	0.0001 - 100	Yes (SLS)	48 h	Dialysis (a comparison between dialysed and non-dialysed nanoparticles)	pH; ζ-potential; Conductivity;	Increased mortality at >100 mg/L; Increased mortality at EC ₅₀ = 22.0 ± 0.7 mg/L	Bangs Laboratories, Inc., US	3

D. magna	100 DLS, ELS, SEM, -COOH	95, DLS, ELS	0.01 - 100	Yes (SLS)	48 h	Dialysis (a comparison between dialysed and non-dialysed nanoparticles)	pH; ζ-potential; Conductivity	Increased mortality at >100 mg/L; Increased mortality at EC_{50} = 13.0±1.4 mg/L	Bangs Laboratories, Inc., US	3
D. magna	50-100, 110 and 300 DLS, -NH ₂	110, 370 and 360, DLS	1, 40, 70, 75, 100	Not mentioned	48 h	No comments	pH; ζ-potential; Temperature; Light-dark period; Dissolved oxygen; Ammonia	Increased mortality at LC_{50} = 5.24 mg/L; Behavioural changes and elevated rates at ROS at 1 mg/L	Aladdin; Thermo Scientific, China	4
D. magna	50 DLS, NTA, DCS, -NH ₂	120-150, NTA	1.4 and 2.7	Not mentioned	24 and 48 h	Dialysis	pH; Temperature; Light-dark period; Turbidity	Increased mortality at 1.4 mg/L	Bangs Laboratories, Inc., US	5
D. magna	26, 53, 62 DLS, -NH ₂ , - COOH	Not mentioned	0.0032, 0.032, 0.32, 0.76, 3.2, 7.6	Not mentioned	103 d	Dialysis	pH; Temperature; Light-dark period; Sedimentation	Increased mortality at 0.32 mg/L	Bangs Laboratories, Inc., US	6
D. magna	52 DLS, -NH ₂	Not mentioned	25 - 150	Not mentioned	24 h	Dialysis	Not mentioned	Increased mortality at >75 mg/L	Bangs Laboratories, Inc., US	7
D. magna	130-150, surface modification not specified	130-150, DLS	0.30, 0.51 0.60, 1.20, 2.40, 4.80 mmol	Not mentioned	48 h	No comments	pH; ζ-potential	A 2-fold reduction in the acute toxicity after nanoplastics sonication process	Synthesized by authors	8
D. pulex	75 DLS, TEM, surface modification not specified	71, DLS, TEM	0.1, 1, 10, 50, 100, 150, 200, 400	Not mentioned	48 and 96 h	No comments	ζ-potential; Temperature; Light-dark period; Dissolved oxygen	Increased mortality at LC_{50} = 80.02 mg/L; Changes in gene expression at 0.1 mg/L	BaseLine Chromtech Research Centre, China	9

D. pulex	75 DLS, TEM, surface modification not specified	71, DLS, TEM	0.1, 0.5, 1, 2	Not mentioned	21 d	Centrifugation followed by washing with ultrapure water	Temperature; Light-dark period; Dissolved oxygen	Changes in genes expression at 0.5 mg/L	BaseLine Chromtech Research Centre, China	10
D. pulex	75 DLS, surface modification not specified	71, DLS	0.1, 0.5, 1, 2, 10, 50, 100, 150, 200, 400	Not mentioned	48 h, 21 d	No comments	nPS structure; Temperature; Light-dark period; Dissolved oxygen	Increased mortality at LC_{50} = 76.69 mg/L; Growth inhibition at 0.5 mg/L; Reproduction impairment at 0.1 mg/L	BaseLine Chromtech Research Centre, China	11
D. pulex	75 DLS, TEM, surface modification not specified	71, DLS	0.1, 0.5, 1, 2	Not mentioned	21 d	No comments	Temperature; Light-dark period	Changes in genes expression at 2 mg/L	BaseLine Chromtech Research Centre, China	12
D. pulex	75 DLS, TEM, surface modification not specified	71, DLS	0.1	Not mentioned	21 d	No comments	Temperature; Light-dark period	Reproduction impairment and growth inhibition	BaseLine Chromtech Research Centre, China	13
D. pulex	75 DLS, TEM, surface modification not specified	71, DLS	1	Not mentioned	21 d	No comments	ζ-potential; Temperature; Light-dark period; Dissolved oxygen	Changes in genes expression	BaseLine Chromtech Research Centre, China	14
D. pulex	75 DLS, TEM, surface modification not specified	71, DLS	1	Not mentioned	96 h	No comments	Temperature; Light-dark period	Changes in genes expression	BaseLine Chromtech Research Centre, China	15
D. pulex	75 DLS, TEM, surface	71, DLS	0.001, 0.1, 0.5, 1, 2	Not mentioned	21 d	No comments	Temperature; Light-dark period	Changes in genes expression	BaseLine Chromtech Research	16

	modification not specified								Centre, China	
D. pulex	71.18 DLS, TEM, surface modification not specified	71, 18 DLS	0.1, 0.5, 1, 2	Not mentioned	21 d	No, because sodium azide concentration was below toxicity threshold	Temperature; Light-dark period	Inhibition of fecundity and population growth; Changes in proteins expression	BaseLine Chromtech Research Centre, China	17
<i>Carassius</i> <i>carassius</i> (size is not provided)	24 DLS, surface modification not specified	Not mentioned	100	Not mentioned	42 d	Dialysis	Temperature; Light-dark period	Changes in metabolism and behaviour	Bangs Laboratories, Inc., US	18
<i>C. carassius</i> (8.2–9.6 cm, 7.5–13.7 g)	24 and 27 DLS, NTA, - SO ₃ H	Not mentioned	71.35	Not mentioned	61 d	Dialysis	Temperature; Light-dark period	Changes in metabolism and behaviour	Bangs Laboratories, Inc., US	19
C. carassius (size is not provided)	52 and 180 DLS, -NH ₂	56 and 174, DLS	29 – 100	Not mentioned	67 d	Dialysis	Not mentioned	Changes in behaviour	Bangs Laboratories, Inc., US	7
Danio rerio (3–4 months old)	45 DLS, surface modification not specified	30.67±8.97, DLS	0.05	Not mentioned	7 d	Centrifugation followed by washing with ultrapure water	ζ-potential; pH; Temperature; Light-dark period	Changes in oxygen consumption and elevated heart rate	Bangs Laboratories, Inc., US	20
D. rerio (embryo; 0, 24, 48 and 72 hpf)	100 SEM, surface modification not specified	Not mentioned	2.2x10 ⁻⁷	Not mentioned	72 h	Centrifugation followed by washing with ultrapure water	Temperature; Light-dark period	Elevated heart rate and blood flow, changes in development	Bangs Laboratories, Inc., US	21
D. rerio (adults, ~6 months old)	70 TEM, surface modification not specified	Not mentioned	0.5, 1.5, 5	Not mentioned	7 d, 7 weeks	No comments	pH; Temperature; Light-dark period; Dissolved oxygen; Electrical conductivity; Water hardness	Changes in the activity of the nervous system at 1.5 and 5 mg/L	BaseLine ChromTech Research Centre, China	22

D. rerio (larvae, 3 hpf)	50 TEM, surface modification not specified	Not mentioned	1	Not mentioned	48 h, 72 h	No comments	ζ-potential; Temperature	Inhibition of the larval locomotion; Reduced body length of larvae; Changes in genes expression	Polysciences Co., US	23
<i>D. rerio</i> (larvae, 72, 96, or 120 hpf)	50 DLS, SEM, TEM, surface modification not specified	50, DLS, SEM, TEM	10	Not mentioned	24 h	No comments	ζ-potential; pH; nPS structure; Light-dark period; Temperature	Accumulation in the cytoplasm; Changes in genes expression	Polyscience, Inc., US	24
<i>D. rerio</i> (adult, 6 months old)	42 Methodology is not mentioned, surface modification not specified	Not mentioned	1x10 ⁻⁴ , 0.001, 0.01	Not mentioned	5 d	No comments	Not mentioned	Decreased heart rate and locomotor activity	Bangs Laboratories, Inc., US	25

References

- E. Besseling, B. Wang, M. Lürling and A. A. Koelmans, Nanoplastic Affects Growth of *S. obliquus* and Reproduction of *D. magna, Environmental Science & Technology*, 2014, 48, 12336-12343.
- F. Nasser and I. Lynch, Secreted protein eco-corona mediates uptake and impacts of polystyrene nanoparticles on *Daphnia magna*, *Journal of Proteomics*, 2016, 137, 45-51.
- 3. M. Heinlaan, K. Kasemets, V. Aruoja, I. Blinova, O. Bondarenko, A. Lukjanova, A. Khosrovyan, I. Kurvet, M. Pullerits, M. Sihtmäe, G. Vasiliev, H. Vija and A. Kahru, Hazard evaluation of polystyrene nanoplastic with nine bioassays did not show particle-specific acute toxicity, *Science of The Total Environment*, 2020, **707**, 136073.
- W. Lin, R. Jiang, S. Hu, X. Xiao, J. Wu, S. Wei, Y. Xiong and G. Ouyang, Investigating the toxicities of different functionalized polystyrene nanoplastics on *Daphnia magna, Ecotoxicol Environ Saf*, 2019, 180, 509-516.
- R. Frankel, M. T. Ekvall, E. Kelpsiene, L.-A. Hansson and T. Cedervall, Controlled protein mediated aggregation of polystyrene nanoplastics does not reduce toxicity towards Daphnia magna, *Environmental Science: Nano*, 2020, DOI: 10.1039/C9EN01236B.

- E. Kelpsiene, O. Torstensson, M. T. Ekvall, L.-A. Hansson and T. Cedervall, Longterm exposure to nanoplastics reduces life-time in *Daphnia magna*, *Scientific Reports*, 2020, 10, 5979.
- K. Mattsson, E. V. Johnson, A. Malmendal, S. Linse, L.-A. Hansson and T. Cedervall, Brain damage and behavioural disorders in fish induced by plastic nanoparticles delivered through the food chain, *Scientific Reports*, 2017, 7, 11452.
- V. P. Vaz, D. J. Nogueira, D. S. Vicentini and W. G. Matias, Can the sonication of polystyrene nanoparticles alter the acute toxicity and swimming behavior results for *Daphnia magna?*, *Environmental Science and Pollution Research*, 2021, 28, 14192-14198.
- 9. Z. Liu, M. Cai, P. Yu, M. Chen, D. Wu, M. Zhang and Y. Zhao, Age-dependent survival, stress defense, and AMPK in *Daphnia pulex* after short-term exposure to a polystyrene nanoplastic, *Aquatic Toxicology*, 2018, **204**, 1-8.
- D. Wu, Z. Liu, M. Cai, Y. Jiao, Y. Li, Q. Chen and Y. Zhao, Molecular characterisation of cytochrome P450 enzymes in waterflea (*Daphnia pulex*) and their expression regulation by polystyrene nanoplastics, *Aquatic Toxicology*, 2019, 217, 105350.
- Z. Liu, P. Yu, M. Cai, D. Wu, M. Zhang, Y. Huang and Y. Zhao, Polystyrene nanoplastic exposure induces immobilization, reproduction, and stress defense in the freshwater cladoceran Daphnia pulex, *Chemosphere*, 2019, **215**, 74-81.

- Z. Liu, Y. Huang, Y. Jiao, Q. Chen, D. Wu, P. Yu, Y. Li, M. Cai and Y. Zhao, Polystyrene nanoplastic induces ROS production and affects the MAPK-HIF-1/NFkB-mediated antioxidant system in Daphnia pulex, *Aquatic Toxicology*, 2020, 220, 105420.
- Z. Liu, M. Cai, D. Wu, P. Yu, Y. Jiao, Q. Jiang and Y. Zhao, Effects of nanoplastics at predicted environmental concentration on *Daphnia pulex* after exposure through multiple generations, *Environmental Pollution*, 2020, 256, 113506.
- W. Zhang, Z. Liu, S. Tang, D. Li, Q. Jiang and T. Zhang, Transcriptional response provides insights into the effect of chronic polystyrene nanoplastic exposure on *Daphnia pulex, Chemosphere*, 2020, 238, 124563.
- Z. Liu, Y. Li, E. Pérez, Q. Jiang, Q. Chen, Y. Jiao, Y. Huang, Y. Yang and Y. Zhao, Polystyrene nanoplastic induces oxidative stress, immune defense, and glycometabolism change in *Daphnia pulex*: Application of transcriptome profiling in risk assessment of nanoplastics, *Journal of Hazardous Materials*, 2021, **402**, 123778.
- Z. Liu, Y. Jiao, Q. Chen, Y. Li, J. Tian, Y. Huang, M. Cai, D. Wu and Y. Zhao, Two sigma and two mu class genes of glutathione S-transferase in the waterflea *Daphnia pulex*: Molecular characterization and transcriptional response to nanoplastic exposure, *Chemosphere*, 2020, **248**, 126065.

- Z. Liu, Y. Li, M. S. Sepúlveda, Q. Jiang, Y. Jiao, Q. Chen, Y. Huang, J. Tian and Y. Zhao, Development of an adverse outcome pathway for nanoplastic toxicity in *Daphnia pulex* using proteomics, *Science of The Total Environment*, 2020, 144249.
- T. Cedervall, L.-A. Hansson, M. Lard, B. Frohm and S. Linse, Food Chain Transport of Nanoparticles Affects Behaviour and Fat Metabolism in Fish, *PLOS ONE*, 2012, 7, e32254.
- K. Mattsson, M. T. Ekvall, L.-A. Hansson, S. Linse, A. Malmendal and T. Cedervall, Altered Behavior, Physiology, and Metabolism in Fish Exposed to Polystyrene Nanoparticles, *Environmental Science & Technology*, 2015, 49, 553-561.
- J. A. Pitt, R. Trevisan, A. Massarsky, J. S. Kozal, E. D. Levin and R. T. Di Giulio, Maternal transfer of nanoplastics to offspring in zebrafish (*Danio rerio*): A case study with nanopolystyrene, *Science of The Total Environment*, 2018, 643, 324-334.
- Z. Duan, X. Duan, S. Zhao, X. Wang, J. Wang, Y. Liu, Y. Peng, Z. Gong and L. Wang, Barrier function of zebrafish embryonic chorions against microplastics and nanoplastics and its impact on embryo development, *Journal of Hazardous Materials*, 2020, **395**, 122621.
- S. Sarasamma, G. Audira, P. Siregar, N. Malhotra, Y. H. Lai, S. T. Liang, J. R. Chen,
 K. H. Chen and C. D. Hsiao, Nanoplastics Cause Neurobehavioral Impairments,
 Reproductive and Oxidative Damages, and Biomarker Responses in Zebrafish:

Throwing up Alarms of Wide Spread Health Risk of Exposure, *International journal* of molecular sciences, 2020, **21**.

- Q. Chen, M. Gundlach, S. Yang, J. Jiang, M. Velki, D. Yin and H. Hollert,
 Quantitative investigation of the mechanisms of microplastics and nanoplastics
 toward zebrafish larvae locomotor activity, *Science of the total environment*, 2017,
 584, 1022-1031.
- 24. M. Sendra, P. Pereiro, M. P. Yeste, L. Mercado, A. Figueras and B. Novoa, Size matters: Zebrafish (*Danio rerio*) as a model to study toxicity of nanoplastics from cells to the whole organism, *Environmental Pollution*, 2020, 268, 115769.
- 25. Q. Hu, H. Wang, C. He, Y. Jin and Z. Fu, Polystyrene nanoparticles trigger the activation of p38 MAPK and apoptosis via inducing oxidative stress in zebrafish and macrophage cells, *Environmental Pollution*, 2020, **269**, 116075.