1

Supplementary Information

2 A review of PFAS fingerprints in fish from Norwegian freshwater

bodies subject to different source inputs

4 Håkon A. Langberg^{a, b, *}, Sarah E. Hale^a, Gijs D. Breedveld^{a, c}, Bjørn M. Jenssen^b, and Morten

5 Jartun ^d

^a Environment and Geotechnics, Norwegian Geotechnical Institute (NGI), Oslo, Norway

- 7 ^b Department of Biology, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
- 8 ^c Department of Geosciences, University of Oslo, Oslo, Norway
- 9 ^d Norwegian Institute for Water Research (NIVA), Oslo, Norway
- 10 Pages: 29
- 11 Tables: 9
- 12 Figures: 6

13 Table of content

14	Lake descriptions
15	Lake Mjøsa2
16	Femunden2
17	Lake Randsfjorden
18	Chemical analyses
19	Eurofins Environment Testing Norway AS3
20	Norwegian Institute for Water Research (NIVA)
21	Statistical analyses
22	Selection of sites and PFAS for Principal Components Analyses (PCA)5
23	Brown trout muscle
24	Perch muscle7
25	Supplementary tables
26	Supplementary figures
27	References

28

29 Lake descriptions

Short descriptions of each of the large lakes: lake Mjøsa, lake Femunden, and lake Randsfjorden is
given below. A summary of all the investigated water bodies is shown in Table S1.

32 Lake Mjøsa

33 Lake Mjøsa is the largest lake in Norway (surface area: 369 km²). It is a deep lake (maximum 453 m) situated in the central-eastern part of Norway and is subject to several possible environmental 34 35 impacts. These include runoff from major roads, industries, urban areas (five cities located at the lake), and discharge from waste water treatment plants (WWTPs), including three large and several smaller 36 37 plants, with a total of 200 000 population equivalents (PE) (Blytt and Stang, 2019). Agricultural runoff 38 and input from major rivers also provide significant pollutant fluxes to the lake. Theoretical mean 39 residence time for Lake Mjøsa is 4.9 years. Lake Mjøsa contains over 20 different fish species, such as 40 brown trout (Salmo trutta), pike (Esox Lucius), perch (Perca fluviatilis) and burbot (Lota lota) (e.g. 41 (Spikkeland et al., 2016; Fjeld et al., 2017; Sandlund et al., 2017). The biodiversity of Lake Mjøsa is rich 42 and it causes the top-predator brown trout and E. smelt to be at a higher trophic level in this lake 43 compared to similar lakes in Norway.

44 Femunden

45 Lake Femunden is the third largest lake in Norway (surface area: 203 km²) and is, contrary to Lake 46 Mjøsa, situated in a forested and mountainous catchment area. It is characterized as a low productive 47 oligotrophic lake with no artificial regulation and with limited anthropogenic impacts, mostly from 48 backpacking hikers and some minor roads. 62 % of the catchment area consist of bare mountain, 49 whereas 26 % is forests, 12 % water bodies and only 0.2 % agriculture. To the best of our knowledge, the main environmental impact comes from long-range transport. There is a small wastewater facility 50 51 close to the lake (PE: ~200), but it has infiltration to the ground and no direct discharges to the lake. 52 The lake is 60 km long and 10 km wide (widest area). Several areas are quite deep, at up to 90 m deep 53 in the northern part and 150 m deep in the southern end of the lake. Riverine inputs peak in the snow melting season in May/June with a mean discharge of 12-16 Ls⁻¹km⁻². The theoretical mean residence 54 55 time is 7.6 years. The ecosystem in lake Femunden consist of eight species of fish including brown 56 trout, European whitefish (Coregonus lavaretus) and Arctic char (Salvelinus alpinus). E. whitefish is the 57 main prey for brown trout as they become piscivorous at the age of 3-9 years, or approximately 30 cm 58 (Sandlund et al., 2012). Only a small proportion of the brown trout population in Lake Femunden is 59 pelagic, the majority prey in the littoral zone on benthic or terrestrial (insects) organisms (Næsje et al., 60 1996; Jonsson et al., 1999).

61 Lake Randsfjorden

Lake Randsfjorden is the fourth largest lake in Norway (surface area: 140 km²), containing 11 fish 62 63 species. Local human impact to Lake Randsfjorden takes the form of a significant amount of agricultural 64 runoff with limited local sources of contaminants. Treated sewage from approximately 30 000 PE runs into the lake in addition to private scattered drains. The lake is 77 km long and has an area of 140 km², 65 with a theoretical mean residence time of 2.5 years. Top predators in the pelagic food web include 66 brown trout and arctic char (Salvelinus alpinus). Planktivore fish species are dominated by European 67 68 smelt and whitefish. Contrary to Lake Mjøsa, the pelagic food web in Lake Randsfjorden does not contain the invertebrate opossum shrimp Mysis relicta consequently making the pelagic food web 69 70 chain in Lake Randsfjorden shorter than in Lake Mjøsa.

71 Chemical analyses

72 Eurofins Environment Testing Norway AS

73 Chemical analysis of samples from sites 1-3 (Oslo airport, Evenes airport, and Fagernes airport), as well 74 as muscle samples from site 4 (Rygge airport) were carried out by Eurofins Environment Testing 75 Norway AS. Up to 22 PFAS were targeted according to method DIN EN ISO/IEC 17025:2005 using high 76 performance liquid chromatography and mass spectrometric detection (HPLC/MS-MS). Approximately 77 1.5 g material was freeze dried and 18 surrogate standards (¹³C-PFOS, 13C₂-PFDoA, ¹⁸O₂-PFHxS, ¹⁸O₂-PFHxS, ¹³C₈-PFOSA, ¹³C₂-PFTeDA, ¹³C-PFBS, ¹³C-PFBS, ¹³C₄-PFHpA, ¹³C₅-PFPeA, ¹³C₂-6:2FTS, ¹³C₂-6:2FTS, 78 ¹³C₄-PFBA, ¹³C₂-PFHxA, ¹³C₈-PFOA, ¹³C₅-PFNA, ¹³C₂-PFDA, and ¹³C₂-PFUnA) were added. Extraction was 79 80 performed using methanol in an ultrasonic bath followed by vaporization. Acetonitrile and hexane 81 were added for solvent exchange. The acetonitrile phase was cleaned up, vaporized, and dissolved in 82 methanol. ¹³C₄-PFOA was used as internal standard. Sample intake weights were used to calculate 83 sample specific limits of quantifications (LOQ).

84 Norwegian Institute for Water Research (NIVA)

85 Analysis of samples from sites 5-8, as well as liver samples from site 4, were performed by the 86 Norwegian Institute for Water Research (NIVA) following previously described methods (Langberg et 87 al., 2020). Analyses were performed using liquid chromatography quadrupole time-of-flight mass 88 spectrometry (LC-qTOF-MS). A mixture of isotope labelled PFAS (MPFAC-MX_C-ES purchased from 89 Wellington Laboratories: M8PFOSA, M2-6:2FTS, M2-8:2FTS, d5-N-MeFOSA-M, d9-N-etFOSE-M, d5-N-90 EtFOSAA-M, M4-8:2 diPAP) was added as internal standards (IS) for quantification before extraction. Approximately 2 grams of wet biota sample was weighed and IS was added. Extraction was carried out 91 92 twice using acetonitrile (5+4 mL), ultrasonic bath (30+30 min) and shaking (30+30 min). Extracts were

93 concentrated under a nitrogen flow. Aliquots of 7 µL extract were injected onto a Waters Acquity BEH 94 C8 reversed phase column (100 x 2.1 mm, 1.8 µm particles, using an Acquity Ultra Performance HPLC 95 system (Waters). The target compounds were separated at a flow rate of 0.5 mL min⁻¹ using acetonitrile 96 (A) and 5.2 mM NH₄OAc in water (B). The following binary gradient was applied: 0-1.5 min, 12% of A; 1.5-11 min, linear change to 99% of A; 11-13 min, 99% of A. The Acquity system was coupled to a Xevo 97 98 G2-S Q-ToF-HRMS instrument (Waters) using negative ion electrospray ionization (ESI(-)). Mass spectra 99 were registered in full scan mode (mass range m/z of 150-1100). The following optimized parameters 100 were applied: Capillary voltage, 0.7 kV; desolvation temperature, 500 °C; source temperature, 120 °C; 101 nitrogen desolvation gas flow, 800 L h⁻¹. Quantitative analysis was performed employing extracted 102 mass chromatograms from full scan recording using the m/z (typical mass tolerance of 0.03 μ) for the 103 different analytes.

104 Blank samples and standard addition samples were used for each batch of samples for analyses (20-25 samples). Concentrations in the blank samples were low (<0.5 ng g⁻¹ or ng L⁻¹) and consistent regardless 105 106 of different equipment, indicating little cross contamination. Blank values were subtracted from results 107 when calculating concentrations in samples. The autosampler was set up with a stainless-steel needle 108 and a washing program using MeOH/Isopropyl alcohol (IPA) as a strong washing solution. Instruments 109 were cleaned daily, and blank samples were run before and after each analysis batch (typically 20-30 110 samples). A random sample was selected for duplicate analysis to control for repeatability. Recoveries 111 of QA samples (matrix matched standard addition samples) in the present work were satisfactory (within the range of 70-110%). LOQ for individual PFAS are reported in Table S3. 112

Statistical analyses

114 Concentrations are given on a wet weight basis (w.w.). Averages are presented as arithmetic means with the standard error of the mean (SEM) where appropriate. Differences in PFAS profiles 115 116 (composition, expressed as relative distribution profiles of the total SPFAS) between sites were 117 explored using PCA. For each individual PCA, the PFAS profiles were standardized to have mean zero 118 and standard deviation of one before performing PCA. According to the Shapiro-Wilk w-test and shape 119 of data histograms, not all of the datasets were normally distributed. Therefore, differences in PFAS 120 concentrations, percentages, and ratios, as well as differences in PC1 scores were tested using the non-121 parametric Kruskal-Wallis test and Bonferroni correction. The level of significance was set to 0.05. 122 Statistical analyses were carried out using R version 3.4.2; R Core Team; Vienna, Austria(R Core Team, 123 2017) (packages agricolae (de Mendiburu, 2019) factoextra (Kassambara and Mundt, 2017) and 124 FactoMineR (Lê et al., 2008), functions: kruskal.test, kruskal, prcomp (scale=T and center=T)).

125 Selection of sites and PFAS for Principal Components Analyses (PCA)

The number of targeted PFAS varied between sites and sampling year, summarised in Table S4 and Table S5. The same PFAS need to be targeted in all samples that are included in a PCA in order to make a meaningful comparison. Therefore, the number of PFAS that could be included in the different PCAs differed, and was limited by the PFAS that were targeted at the different sites. The selection of the sites and PFAS for the PCA are described in the following.

131 Seven PFAS were targeted for all muscle samples: perfluorohexanoic acid (PFHxA), perfluoroheptanoic 132 acid (PFHpA), perfluorononanoic acid (PFNA), perfluorodecanoic acid (PFDA), perfluorobutanesulfonate (PFBS), perfluorohexanesulfonate (PFHxS), and perfluorooctanesulfonate 133 134 (PFOS). Perfluorobutanoic acid (PFBA) and perfluoropentanoic acid (PFPA) were analysed in most 135 samples. PFBA was only detected in one sample (one brown trout muscle from Evenes airport), while 136 PFPA was not detected in any sample. Therefore, these two PFAS were not included in further data 137 analyses and interpretations. Perfluorooctanoic acid (PFOA) was targeted in all samples except for in 138 brown trout sampled in lake Mjøsa in 2016. 6:2 fluorotelomer sulfonate (6:2 FTS) was analysed in all 139 samples, except samples from lake Mjøsa. Perfluorodecanesulfonate (PFDS) and perfluorooctanesulfonamide (FOSA) were analysed in all samples, except those from Rygge airport. 140 141 Perfluoroundecanoic acid (PFUnDA), perfluorododecanoic acid (PFDoDA), perfluorotridecanoic acid 142 (PFTrDA), and perfluorotetradecanoic acid (PFTeDA) were analysed in all samples, except those from lake Mjøsa and Rygge airport. 8:2 FTS was targeted in all samples, except from samples from lake Mjøsa 143 144 and a few samples from lake Randsfjorden.

145 23 PFAS were targeted for all liver samples: PFPA, PFHxA, PFHpA, PFOA, PFNA, PFDA, PFUnDA, PFDoDA, 146 PFTrDA, PFTeDA, PFBS, PFHxS, PFOS, PFDS, Perfluorododecansulfonate (PFDoDS), FOSA, N-methyl 147 perfluorooctanesulfonamide (MeFOSA), N-ethyl perfluorooctanesulfonamide (EtFOSA), N-methyl 148 perfluorooctanesulfonamido ethanol (MeFOSE), N-ethyl perfluorooctanesulfonamido ethanol 149 (EtFOSE), N-methyl perfluorooctansulfonamido (MeFOSAA), acetic acid N-ethyl 150 perfluorooctansulfonamido acetic acid (EtFOSAA), and 6:2 FTS. Of these, six were not detected in any 151 of the samples: PFPA, PFDoDS, MeFOSA, MeFOSE, EtFOSE, MeFOSAA. 8:2 FTS was targeted for all 152 samples, except samples from 2014 in lake Femunden, lake Mjøsa, and lake Randsfjorden. PFBA was 153 targeted in most samples, but not detected in any and was therefore not included in the statistical 154 analyses.

5

155 Brown trout muscle

PFAS profiles in brown trout muscle were used to explore if and how PFAS fingerprints in fish affected
by each of the three source types differed from each other. Brown trout muscle was the only tissue
where PFAS was targeted in multiple samples covering all three source types.

PFOA was targeted for all brown trout muscle samples, except for brown trout sampled in lake Mjøsa in 2016. Therefore, the brown trout from lake Mjøsa in 2016 was not included in the PCA. Ten PFAS (PFHxA, PFHpA, PFOA, PFNA, PFDA, PFBS, PFHxS, PFOS, PFDS, and FOSA) were targeted for all the remaining samples of brown trout. PFHpA and PFBS were not detected in any sample and they were excluded from the analysis. Three individuals from Fagernes airport did not contain PFAS concentrations above the LOQ (0.5-1.0 µg kg⁻¹) and were excluded from the PCA shown in Figure S3.

The PCA plot (Figure S3) showed groupings according to the different sites and hence, the different sources. In the score plot, samples from AFFF impacted sites (Evenes airport and Fagernes airport) grouped to the right, while samples from the other sites plotted generally to the left of the AFFF samples. In the loading plot, PFOS plotted to the right, while PFOA and PFDA plotted to the left. This reflects the fact that the samples from AFFF impacted sites generally had higher percentages of PFOS compared to the other sites.

171 It is also clear from Figure S3 that some trout muscle samples from the different sites plotted together 172 in the PCA. Some of the samples from the sites not expected to be directly affected by AFFF (lake 173 Randsfjorden and lake Mjøsa) plotted together with some samples from the sites expected to be 174 directly affected by AFFF (Evenes airport and Fagernes airport). The main reason for this was that there 175 were few PFAS above the LOQ in many samples. PFOS was the only above the LOQ in 20 of 34 samples 176 from Evenes airport, 29 of 43 from Fagernes airport, 31 of 121 from lake Mjøsa, 17 of 24 from lake 177 Randsfjorden, and one of six samples from lake Tyrifjorden. Therefore, to further explore differences 178 in trout muscle profiles depending on the sources, samples from lake Mjøsa were excluded in order to 179 include the C11-C14 PFCA in the analysis, shown in Figure 2 in the main paper (the C11-C14 PFCA: 180 PFUnDA; PFDoDA; PFTrDA; and PFTeDA, were targeted for all sites but lake Mjøsa). PFOA was only 181 detected in samples from lake Mjøsa and was therefore excluded from this PCA. 6:2 FTS and 8:2 FTS were not detected in any sample and were therefore not included in the PCA. When including the C11-182 183 C14 PFCA in the analysis, a clear grouping according to the different sites were observed reflecting 184 distinct differences in PFAS profiles between the sites (Figure 2 in the main paper).

185 Perch muscle

A similar pattern as in trout muscle was observed for PFAS profiles (ten PFAS) in perch muscle from Fagernes airport, Rygge airport and lake Tyrifjorden, shown in Figure S4. Concentrations below the LOQ and varying number of targeted PFAS between sites complicated interpretations (e.g. PFOS was the only detected PFAS in 21 of 34 samples from Fagernes airport and in two of 42 samples from lake Tyrifjorden). However, a general trend was observed where samples from the AFFF affected sites (Fagernes airport and Rygge airport) were dominated by PFOS, while samples from lake Tyrifjorden had higher percentages of PFCA.

193 Due to the fact that some PFAS (PFUnDA, PFDoDA, PFTrDA, PFTeDA, PFDS, and FOSA) were not 194 targeted for samples from Rygge airport, a separate PCA for samples from Fagernes airport and lake 195 Tyrifjorden (16 PFAS) was carried out, shown in Figure S5. As for trout muscle, a more distinct grouping 196 according to percentages of PFOS (and other PFSA: PFHxS, PFHpS, and PFDS) and long chained PFCA 197 was shown when more PFAS were included. However, PFOS was the only compound of the 16 targeted 198 PFAS which was found at concentrations above the LOQ in 11 samples from Fagernes airport, reflecting 199 the low concentrations in muscle tissue. PC 1 (X-axis) explained 34% of the variance. PFSA plotted to 200 the right, while C10-C14 PFCA plotted to the left. As for trout muscle, perch muscle samples from the 201 AFFF impacted site (Fagernes airport) grouped on the side of the plot dominated by PFOS and other 202 PFSA (right) while samples from lake Tyrifjorden (paper industry) plotted on the side associated with 203 long chained PFCA (left) or close to the centre. A few samples plotted low on the Y-axis (PC 2) due to 204 having concentrations of one or several of PFHpA, PFOA, and/or PFNA above the LOQ, which were only 205 detected in a few individuals.

Supplementary tables

	Locat (UTM33 E	ion UREF89)	Volume (km ³)	Surface area (km²)	Max depth (m)	Catchment area (km ²)	Person equivalents	Main contaminant sources
Lake Mjøsa	N: 6746114	E: 282000	65	369	453	17 251	200 000	Five urban areas, major roads, (old) industry, 3 major WWTP ^a , agriculture
Lake Femunden	N: 6898700	E: 338500	6	203	153	1 790	~200	Long range transport
Lake Randsfjorden	N: 6717603	E: 244543	7	140	131	3 700	29 000	Long range transport (Rural areas, agriculture, roads)
Lake Tyrifjorden	N: 6642656	E: 554074	13	138	288	9 900	35 000	Paper industry, urban areas, agriculture
Lake Vansjø (Rygge airport)	N: 6590832	E: 263411	0.3	36	35	680	30 000	Military/civil airport, fire training facility, agriculture
Lake Lavangsvatnet (Evenes airport)	N: 7599017	E: 568141	-	1.60		76	-	Evenes airport, fire training facility
Lake Langvatnet (Evenes airport)	N: 7599017 E: 568141 N: 7599400 E: 569040			0.9		76		Evenes airport, fire training facility, outlet to Lavangsvatnet
Lake Leirin, included								
lake Kalken (Fagernes	N: 6778672	E: 568141		1.70		35		Fagernes airport, fire training facility
airport)								
River Leira (Oslo airport)	N: 6676300	E: 281245		Length: 101 km		670		Oslo airport, (agriculture)

Table S1. Overview of the investigated water bodies, including the main known (and suspected) contaminant sources.

WWTP: wastewater treatment plant

	PFAS source		A	FFF		Paper industry	Diffuse	Long-ran	ge transport
	Sita	Oslo	Evenes	Fagernes	Rygge	Lake	Lake	Lake	Lake
	SILE	Airport	Airport	Airport	Airport	Tyrifjorden	Mjøsa	Femunden	Randsfjorden
					Liver				
	Arctic char					1			7
	Bream					2			
	Brown trout					6	84	66	34
ies	E. smelt ^a						61		28
Dec.	Perch				15	42			
Sp	Pike					14			
	Roach					8			
	Vendace						37		
	Whitefish					13		36	
					Muscl	е			
	Arctic char		15			1			1
	Brown trout		34	46 (3) ^c		6	125		24
	E. smelt ^a						120 (1) ^c		21 (7) ^c
cie	Perch			34	16	42			
Spe	Pike	2			14	14			
	E. chub ^b	1							
	Whitefish			30 (2) ^c				24 (23) ^c	
	Zander				11				

Table S2. Number of samples (liver and muscle) of different fish species at the different sites.

^a European smelt

^b European chub

^c Numbers inside brackets () are the number of samples where PFAS were not detected

Full name	Abbreviation	LOQ (NIVA
		analyses)
Perfluorobutanoic acid	PFBA	1.0
Perfluoropentanoic acid	PFPA	0.5
Perfluorohexanoic acid	PFHxA	0.5
Perfluoroheptanoic acid	PFHpA	0.5
Perfluorooctanoic acid	PFOA	0.5
Perfluorononanoic acid	PFNA	0.4
Perfluorodecanoic acid	PFDA	0.4
Perfluoroundecanoic acid	PFUnDA	0.4
Perfluorododecanoic acid	PFDoDA	0.4
Perfluorotridecanoic acid	PFTrDA	0.4
Perfluorotetradecanoic acid	PFTeDA	0.4
Perfluoropentadecanoic acid ^{b, c}	PFPeDA	0.4
Perfluorohexadecanoic acid	PFHxDA	0.4
Perfluorobutanesulfonate	PFBS	0.1
Perfluoropentanesulfonate	PFPeS	0.1
Perfluorohexanesulfonate	PFHxS	0.1
Perfluoroheptanesulfonate	PFHpS	0.1
Linear perfluorooctanesulfonate	PFOS	0.1
Branched perfluorooctanesulfonate isomers ^d	Br-PFOS	0.2
Perfluorononanesulfonate	PFNS	0.1
Perfluorodecanesulfonate	PFDS	0.1
Perfluorododecansulfonate	PFDoDS	0.2
Perfluorooctanesulfonamide	FOSA	0.1
N-methyl perfluorooctanesulfonamide	MeFOSA	0.2
N -ethyl perfluorooctanesulfonamide	EtFOSA	0.2
N -methyl perfluorooctanesulfonamido ethanol	MeFOSE	2.0
N -ethyl perfluorooctanesulfonamido ethanol	EtFOSE	2.0
Perfluorooctanesulfonamido acetic acid	FOSAA	0.3
N -methyl perfluorooctansulfonamido acetic acid	MeFOSAA	0.3
N -ethyl perfluorooctansulfonamido acetic acid	EtFOSAA	0.3

Table S3. Full name and abbreviations for the per- and polyfluorinated alkyl substances (PFAS) included in the present study a

Full name	Abbreviation	LOQ (NIVA analyses)
4:2 fluorotelomer sulfonate	4:2 FTS	0.3
6:2 fluorotelomer sulfonate	6:2 FTS	0.3
8:2 fluorotelomer sulfonate	8:2 FTS	0.3
10:2 fluorotelomer sulfonate	10:2 FTS	0.3
12:2 fluorotelomer sulfonate	12:2 FTS	0.3
14:2 fluorotelomer sulfonate	14:2 FTS	0.3
Perfluoro(3,7-dimethyloctanoic acid) ^e	PF-3,7-DMOA	
7H-Dodecafluoroheptanoic acid ^e	HPFHpA	

^a PFAS that were targeted or screened for, but not detected in Langberg et al. (2020) are not included.

^b For analyses at NIVA: standard was not available, detected using exact mass and estimated retention time.

^c For analyses at NIVA: quantified using the standard for PFHxDA.

^d For analyses at NIVA: quantified using the standard for linear PFOS.

^e Not analysed at NIVA

Site	Lake/stream/	Species	Latin	PFBA	PFPA	PFHxA	A PFHpA	PFOA	PFNA	PFDA	PFUnDA	A PFDoDA	PFTrDA	PFTeDA	PFPeDA PFH	IxDA PFBS F	PFPeS	PFHxS	PFHpS	PFOS	Br-
Evenes	Langvatnet/2019	Arctic char	Salvelinus alninus	x	X	x	x	x	x	X	x	×	X	X		X		X	X	X	PFUS
Evenes	Lavangsvatnet/2019	Arctic char	Salvelinus alninus	x	x	x	X	x	x	x	X	X	x	x		x		x	x	x	
Evenes	Kierkvatnet/2019	Brown Trout	Salmo trutta	x	x	x	x	x	x	x	x	x	x	x		x		x	x	x	
Evenes	Lavangsvatnet/2019	Brown Trout	Salmo trutta	x	x	x	x	x	x	x	x	x	x	x		x		x	x	x	
Fagernes	Kalken/2018	Brown Trout	Salmo trutta	x	x	x	x	x	x	x	x	X	X	x		X		x	x	x	
Fagernes	Storfiorden/2018	Brown Trout	Salmo trutta	x	x	x	x	x	x	x	x	X	X	x		X		x	x	x	
Fagernes	Leirin midt/2018	Brown Trout	Salmo trutta	x	x	x	x	X	x	X	x	X	X	X		x		x	X	X	
Fagernes	Susfiorden/2018	Brown Trout	Salmo trutta	X	x	Х	X	X	Х	х	X	X	X	X		X		x	x	X	
Fagernes	Kalken/2018	Perch	Perca fluviatilis	Х	X	Х	X	Х	Х	Х	X	X	X	X		X		X	Х	Х	
Fagernes	Storfiorden/2018	Perch	Perca fluviatilis	х	х	х	х	х	х	х	х	х	х	х		х		х	х	х	
Fagernes	Leirin midt/2018	Perch	Perca fluviatilis	х	х	х	х	Х	х	х	х	Х	х	х		х		х	Х	Х	
Fagernes	Kalken/2018	Whitefish	Coregonus Iavaretus	х	х	х	х	Х	х	х	х	х	х	х		х		х	х	х	
Fagernes	Storfjorden/2018	Whitefish	Coregonus Iavaretus	х	х	х	х	х	х	Х	х	х	Х	х		х		х	х	х	
Fagernes	Leirin midt/2018	Whitefish	Coregonus Iavaretus	х	Х	х	х	Х	Х	х	х	Х	х	х		х		Х	Х	Х	
Femunden	Femunden/2013- 2016	Whitefish	Coregonus Iavaretus		х	х	х	х	х	х	х	х	х	х	х	х	х	х	х	х	
Mjøsa	2009	Brown trout	Salmo trutta	Х		Х	Х	х	Х	Х	Х					Х		х		х	
Mjøsa	2010	Brown trout	Salmo trutta	Х		Х	Х	Х	Х	Х	Х					х		х		Х	
Mjøsa	2011	Brown trout	Salmo trutta	Х		Х	Х	х	Х	Х	Х					Х		х		х	
Mjøsa	2012	Brown trout	Salmo trutta	Х		Х	Х	х	Х	Х	Х					Х		х		х	
Mjøsa	2008	Brown trout	Salmo trutta	Х		Х	Х	Х	Х	Х	Х					х		х		Х	
Mjøsa	2013	Brown trout	Salmo trutta	Х		Х	Х	х	Х	Х	Х					х		Х		х	
Mjøsa	2014	Brown trout	Salmo trutta			Х	Х	х	Х	Х	Х					х		Х		х	
Mjøsa	2015	Brown trout	Salmo trutta			Х	Х	х	Х	Х	Х					х		Х		х	
Mjøsa	2016	Brown trout	Salmo trutta			Х	Х		Х	Х	Х					х		Х		х	
Mjøsa	2009	European smelt	Osmerus eperlanus	х		х	х	х	х	х	х					х		х		х	
Mjøsa	2010	European smelt	Osmerus eperlanus	х		х	х	х	х	х	х					Х		х		х	
Mjøsa	2011	European smelt	Osmerus eperlanus	х		х	х	х	х	х	х					Х		х		х	
Mjøsa	2012	European smelt	Osmerus eperlanus	х		х	х	х	х	х	х					х		х		х	
Mjøsa	2008	European smelt	Osmerus eperlanus			х	х	х	х	х	х					х		х		х	
Mjøsa	2013	European smelt	Osmerus eperlanus	х		х	х	х	х	х	х					х		х		х	
Mjøsa	2014	European smelt	Osmerus eperlanus			х	х	х	х	х	Х					х		х		х	

T C 4	T				• / • /	
Ishia VI	I argatad DEAS in	muscia cam	aloc at the ditte	nant citac and	cnaciae IX ma	arks targatad DEASI
Iable J4.	I al ecicul fi AJ III	IIIUSUIE SAIIII	טובא מנ נווב עווופ	בו כווג אונכא מווע	3050153171110	<u> </u>

Site	Lake/stream/ year	Species	Latin	PFB	A PFP	A PFHxA	PFHpA	PFOA	PFNA	PFDA	PFUnDA	PFDoDA	PFTrDA	PFTeDA	PFPeDA	PFHxDA	PFBS	PFPeS	PFHxS	PFHpS	PFOS	Br- PFOS
Mjøsa	2015	European smelt	Osmerus eperlanus			х	х	х	х	х	х						х		х		х	
Oslo airport	Leira/2018	Pike	Esox lucius	х	Х	х	х	Х	Х	Х	х	х	х	х			Х		Х	х	Х	
Oslo airport	Leira/2018	Squalius cephalus	Squalius cephalus	х	х	х	х	х	х	х	х	х	х	х			х		х	х	х	
Randsfjorden	2015	Arctic char	Salvelinus alpinus		Х	Х	Х	Х	Х	х	Х	Х	Х	Х			Х		Х		Х	
Randsfjorden	2016	Brown trout	Salmo trutta		Х	Х	Х	Х	Х	х	Х	Х	Х	Х	Х		Х	Х	Х	х	Х	
Randsfjorden	2015	Brown trout	Salmo trutta		Х	Х	х	Х	Х	х	Х	Х	Х	Х			Х		Х		Х	
Randsfjorden	2014	Brown trout	Salmo trutta		Х	Х	х	х	Х	х	Х	Х	Х	Х			Х		Х		Х	
Randsfjorden	2013	Brown trout	Salmo trutta		Х	Х	х	х	Х	х	Х	Х	Х	Х			Х		Х		Х	
Randsfjorden	2016	European smelt	Osmerus eperlanus		х	х	х	х	х	х	х	х	х	х	х		х	х	х	х	х	
Randsfjorden	2014	European smelt	Osmerus eperlanus		х	х	х	х	х	х	х	х	х	х			х		х		х	
Randsfjorden	2013	European smelt	Osmerus eperlanus		х	х	х	х	х	х	Х	х	х	х			х		х		х	
Tyrifjorden ^a	Tyrifjorden/2018	Arctic char	Salvelinus alpinus	Х	Х	х	Х	Х	Х	х	Х	х	х	Х	х	х	х	х	Х	х	Х	Х
Tyrifjorden ^a	Tyrifjorden/2018	Brown Trout	Salmo trutta	Х	Х	х	Х	х	Х	Х	Х	х	Х	Х	х	х	х	х	х	х	Х	Х
Tyrifjorden ^a	Tyrifjorden/2018	Perch	Perca fluviatilis	Х	х	х	Х	х	х	Х	Х	х	Х	Х	Х	Х	х	х	х	х	х	Х
Tyrifjorden ^a	Tyrifjorden/2018	Pike	Esox lucius	х	х	х	Х	х	х	х	Х	х	Х	Х	Х	Х	х	х	х	Х	Х	Х
Rygge airport	Lake Vansjø/2013	Perch	Perca fluviatilis	Х	Х	Х	Х	х	Х	х							Х		Х		Х	
Rygge airport	Lake Vansjø/2013	Pike	Esox lucius	Х	Х	Х	Х	х	Х	х							Х		Х		Х	
Rygge airport	Lake Vansjø/2013	Zander	Sander lucioperca	Х	Х	Х	Х	х	Х	х							Х		Х		Х	
Oslo airport	Leira/2018	Brown trout	Salmo trutta	х	Х	Х	Х	Х	Х	Х	Х	Х	Х	х			Х		Х	х	Х	
Oslo airport	Sogna/2018	Brown trout	Salmo trutta	Х	Х	Х	х	Х	Х	Х	Х	Х	Х	х			Х		Х	х	Х	

^a PFAS analysed/screened for in lake Tyrifjorden (Langberg *et al.*, 2020), but not detected are not included in the table.

Site	Lake/stream/ year	Species	Latin	PFNS PFI	OS PFD	DoDS FOSA	A MeFO	SA EtFC	DSA M	eFOSE	EtFOSE	FOSAA	MeFOSA	A EtFOSA	4:2 FTS	6:2 FTS	8:2 FTS	10:2 FTS	12:2 FTS	14:2 FTS	PF-3,7- DMOA	HPFHpA
Evenes	Langvatnet/2019	Arctic char	Salvelinus alpinus	х		х									х	х	Х				х	х
Evenes	Lavangsvatnet/2019	Arctic char	Salvelinus alpinus	х		х									х	х	Х				х	Х
Evenes	Kjerkvatnet/2019	Brown Trout	Salmo trutta	х		Х									х	Х	Х				Х	Х
Evenes	Lavangsvatnet/2019	Brown Trout	Salmo trutta	Х		Х									Х	Х	Х				Х	Х
Fagernes	Kalken/2018	Brown Trout	Salmo trutta	Х		Х									Х	х	Х				Х	Х
Fagernes	Storfjorden/2018	Brown Trout	Salmo trutta	Х		Х									Х	х	Х				Х	Х
Fagernes	Leirin midt/2018	Brown Trout	Salmo trutta	Х		Х									Х	х	Х				Х	Х
Fagernes	Susfjorden/2018	Brown Trout	Salmo trutta	Х		Х									Х	х	Х				Х	Х
Fagernes	Kalken/2018	Perch	Perca fluviatilis	Х		Х									Х	х	Х				Х	Х
Fagernes	Storfjorden/2018	Perch	Perca fluviatilis	Х		Х									Х	Х	Х				Х	Х
Fagernes	Leirin midt/2018	Perch	Perca fluviatilis	Х		Х									Х	х	х				Х	Х
Fagernes	Kalken/2018	Whitefish	Coregonus Iavaretus	х		х									х	х	х				х	Х
Fagernes	Storfjorden/2018	Whitefish	Coregonus Iavaretus	х		х									х	х	х				х	Х
Fagernes	Leirin midt/2018	Whitefish	Coregonus Iavaretus	х		х									х	х	х				х	Х
Femunden	Femunden/2013- 2016	Whitefish	Coregonus Iavaretus	x x	: :	x x	х	х		Х	х		х	Х	х	Х	Х					
Mjøsa	2009	Brown trout	Salmo trutta	Х		Х																
Mjøsa	2010	Brown trout	Salmo trutta	Х		Х																
Mjøsa	2011	Brown trout	Salmo trutta	Х		Х																
Mjøsa	2012	Brown trout	Salmo trutta	Х		Х																
Mjøsa	2008	Brown trout	Salmo trutta	Х		Х																
Mjøsa	2013	Brown trout	Salmo trutta	Х		Х																
Mjøsa	2014	Brown trout	Salmo trutta	Х		Х																
Mjøsa	2015	Brown trout	Salmo trutta	Х		Х																
Mjøsa	2016	Brown trout	Salmo trutta	Х		Х																
Mjøsa	2009	European smelt	Osmerus eperlanus	х		х																
Mjøsa	2010	European smelt	Osmerus eperlanus	х		х																
Mjøsa	2011	European smelt	Osmerus eperlanus	х		х																
Mjøsa	2012	European smelt	Osmerus eperlanus	х		х																
Mjøsa	2008	European smelt	Osmerus eperlanus	х		х																

	Table S4 (continuation, s	showing remaining PFAS).	Targeted PFAS in muscl	e samples at the different sites	s and species (X r	marks targeted PFAS).
--	---------------------------	--------------------------	------------------------	----------------------------------	--------------------	-----------------------

Site	Lake/stream/ year	Species	Latin	PFNS	PFDS	PFDoDS	FOSA	MeFOSA	Etfosa n	/leFOSE E	tFOSE F	OSAA	MeFOSAA	EtFOSAA	4:2 FTS	6:2 FTS	8:2 FTS	10:2 FTS	12:2 FTS 14	4:2 FTS	PF-3,7- DMOA	HPFHpA
Mjøsa	2013	European smelt	Osmerus eperlanus		х		х															
Mjøsa	2014	European smelt	Osmerus eperlanus		х		х															
Mjøsa	2015	European smelt	Osmerus eperlanus		х		х															
Oslo airport	Leira/2018	Pike	Esox lucius		Х		Х								Х	Х	Х				Х	Х
Oslo airport	Leira/2018	Squalius cephalus	Squalius cephalus		х		х								х	х	х				х	х
Randsfjorden	2015	Arctic char	Salvelinus alpinus		х	х	х	х	х	х	х		х	Х		х	х					
Randsfjorden	2016	Brown trout	Salmo trutta	Х	х	х	х	х	х	х	х		х	х	х	х	х					
Randsfjorden	2015	Brown trout	Salmo trutta		х	х	х	х	х	х	х		х	х		х	х					
Randsfjorden	2014	Brown trout	Salmo trutta		х	х	х	х	х	х	х		х	х		х						
Randsfjorden	2013	Brown trout	Salmo trutta	Х	х	х	х	х	х	х	х					х						
Randsfjorden	2016	European smelt	Osmerus eperlanus	Х	х	х	х	х	х	х	х		х	х	х	х	х					
Randsfjorden	2014	European smelt	Osmerus eperlanus		х	х	х	х	х	х	х		х	х		х						
Randsfjorden	2013	European smelt	Osmerus eperlanus	Х	х	х	х	х	х	х	х					х						
Tyrifjorden ^a	2018	Arctic char	Salvelinus alpinus	Х	х	х	х	х	х	х	х	х	х	х	х	х	х	х	х	х		
Tyrifjorden ^a	2018	Brown Trout	Salmo trutta	Х	х	х	х	х	х	х	х	х	х	х	х	х	х	х	х	х		
Tyrifjorden ^a	2018	Perch	Perca fluviatilis	Х	х	х	х	х	х	х	х	х	х	х	х	х	х	х	х	х		
Tyrifjorden ^a	2018	Pike	Esox lucius	х	Х	х	Х	Х	Х	х	Х	Х	х	х	х	х	х	х	Х	х		
Rygge airport	2013	Perch	Perca fluviatilis													х	х					
Rygge airport	2013	Pike	Esox lucius													х	х					
Rygge airport	2013	Zander	Sander Iucioperca													х	х					

^a PFAS analysed/screened for in lake Tyrifjorden (Langberg *et al.*, 2020), but not detected are not included in the table.

Site	Year	Species	Latin	PFBA	PFPA	PFHxA	PFHpA	PFOA	PFNA P	PFDA	PFUnDA	PFDoDA	PFTrDA	A PFTeDA	PFPeDA	PFHxDA	PFBS	PFPeS	PFHxS	PFHpS	PFOS B	Br-PFOS
Femunden	2014	Brown trout	Salmo trutta		Х	Х	Х	Х	Х	Х	Х	Х	Х	Х			х		Х		Х	
Femunden	2015	Brown trout	Salmo trutta		Х	х	Х	Х	х	Х	Х	Х	Х	Х			х		Х		Х	
Femunden	2016	Brown trout	Salmo trutta		Х	х	Х	Х	х	Х	Х	Х	Х	Х	Х		Х	Х	Х	Х	Х	
Femunden	2017	Brown trout	Salmo trutta		Х	х	Х	Х	х	Х	Х	Х	Х	Х	Х	Х	х	Х	Х	Х	Х	
Femunden	2018	Brown trout	Salmo trutta		Х	х	Х	Х	х	Х	Х	Х	Х	Х	Х	Х	х	Х	Х	Х	Х	
Femunden	2019	Brown trout	Salmo trutta		Х	Х	х	Х	х	Х	Х	Х	Х	Х	Х		х	Х	Х	Х	Х	
Femunden	2014	Whitefish	Coregonus lavaretus		Х	х	х	Х	х	Х	х	Х	Х	Х			х		х		х	
Femunden	2015	Whitefish	Coregonus lavaretus		Х	х	х	Х	х	Х	х	Х	Х	Х			х		х		х	
Femunden	2016	Whitefish	Coregonus lavaretus		Х	х	х	Х	х	Х	х	Х	Х	Х	Х		х	х	х	х	х	
Mjøsa	2014	Brown trout	Salmo trutta		Х	х	х	Х	х	Х	х	Х	Х	Х			х		х		х	
Mjøsa	2015	Brown trout	Salmo trutta		Х	х	х	Х	х	х	х	Х	Х	Х			х		Х		Х	
Mjøsa	2016	Brown trout	Salmo trutta		Х	х	х	Х	х	х	х	Х	Х	Х	Х		х	х	Х	х	Х	
Mjøsa	2017	Brown trout	Salmo trutta		Х	х	х	Х	х	х	х	Х	х	Х	х	х	х	х	Х	х	Х	
Mjøsa	2018	Brown trout	Salmo trutta		Х	х	х	Х	х	х	х	Х	х	Х	х	х	х	х	х	х	х	
Miøsa	2019	Brown trout	Salmo trutta		х	х	х	х	х	х	х	Х	х	х	х		х	х	х	х	х	
Miøsa	2014	European smelt	Osmerus eperlanus		х	х	х	х	х	х	х	х	х	х			х		х		х	
Miøsa	2015	European smelt	Osmerus eperlanus		х	х	х	х	х	х	х	х	х	х			х		х		х	
Miøsa	2016	European smelt	Osmerus eperlanus		х	х	х	х	х	х	х	х	х	х	х		х	х	х	х	х	
Miøsa	2017	European smelt	Osmerus eperlanus		х	х	х	х	х	х	х	х	х	х	х	х	х	х	х	х	х	
Miøsa	2018	European smelt	Osmerus eperlanus		х	х	х	х	х	х	х	х	х	х	х	х	х	х	х	х	х	
Miøsa	2019	European smelt	Osmerus eperlanus		х	х	х	х	х	х	х	х	х	х	х		х	х	х	х	х	
Miøsa	2014	Vendace	Coreaonus albula		х	х	х	х	х	х	х	х	х	х			х		х		х	
Miøsa	2016	Vendace	Coreaonus albula		X	X	X	X	X	X	X	X	X	X	х		x	х	X	х	X	
Miøsa	2017	Vendace	Coreaonus albula		X	X	X	X	X	X	X	X	X	X	X	х	x	X	X	x	X	
Miøsa	2018	Vendace	Coreaonus albula		X	X	X	X	X	X	X	X	X	X	X	x	x	X	X	x	X	
Miøsa	2019	Vendace	Coregonus albula		X	x	x	X	x	x	X	x	x	X	x		x	x	x	x	x	
Randsfiorden	2015	Arctic char	Salvelinus alninus	х	x	x	x	x	x	x	x	x	X	x	~		x	~	x		x	
Randsfiorden	2016	Arctic char	Salvelinus alpinus	x	x	x	x	x	x	x	x	x	X	x	х		x	х	x	х	x	
Randsfiorden	2014	Brown trout	Salmo trutta	x	x	x	x	x	x	x	x	x	x	x	~		x	~	x		x	
Randsfjorden	2015	Brown trout	Salmo trutta	x	x	x	x	x	x	x	x	x	x	x			x		x		x	
Randsfiorden	2016	Brown trout	Salmo trutta	x	x	x	x	x	x	x	x	x	x	x	x		x	x	x	x	x	
Randsfjorden	2014	Furonean smelt	Osmerus enerlanus	x	x	x	x	x	x	x	x	x	x	x	~		x	~	x	~	x	
Randsfjorden	2015	European smelt	Osmerus eperlanus	x	x	x	x	x	x	x	x	x	x	x			x		x		x	
Randsfjorden	2015	European smelt	Osmerus enerlanus	x	x	x	x	x	x	x	x	x	x	x	x		x	x	x	x	x	
Tvrifiorden	2014	Perch	Perca fluviatilis	x	x	x	x	x	x	x	x	x	x	x	~		x	~	x	~	x	
Tyrifiorden	2015	Perch	Perca fluviatilis	x	x	x	x	x	x	x	x	x	x	x			x		x		x	
Tyrifiorden	2016	Perch	Perca fluviatilis	x	x	x	x	x	x	x	x	x	x	x	x		x	x	x	x	x	
Tyrifiorden	2010	Arctic char	Salvelinus alninus	X	x	x	x	x	x	x	x	x	x	x	x	x	x	x	x	X	x	x
Tyrifiorden	2010	Broom	Abramis brama	x x	Ŷ	Ŷ	Ŷ	Ŷ	Ŷ	Ŷ	Ŷ	X	x	Ŷ	x	X	Ŷ	Ŷ	Ŷ	x	x	x
Tyrifiorden	2010	Derch	Perca fluviatilic	x x	Ŷ	x	x	x	x	x	Ŷ	Ŷ	Ŷ	Ŷ	x	Ŷ	Ŷ	x	x	x	x	x
Tyrifiorden	2018	Pike	Fsor lucius	X	x	x	x	x	x	x	x	x	x	x	x	x	x	x	x	X	x	x
Tyrifiorden	2010	Roach	Rutilus rutilus	x x	X	x	x	Ŷ	Ŷ	Ŷ	× ×	×	Ŷ	A Y	X	x	Ŷ	Y	x	Ŷ	x	x
ryngoruen	2010	NUach	nutilus rutilus	^	~	^	^	^	^	^	~	^	^	^	^	^	Λ	^	^	~	^	^

Table S5. Targeted PFAS in liver samples at the different sites and species (X marks Targeted PFAS).

Site	Year	Species	Latin	PFBA	PFPA	PFHxA	PFHpA	PFOA	PFNA	PFDA	PFUnDA	PFDoDA	PFTrDA	PFTeDA	PFPeDA	PFHxDA	PFBS	PFPeS	PFHxS	PFHpS	PFOS	Br-PFOS
Tyrifjorden	2018	Trout	Salmo trutta	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х
Tyrifjorden	2018	Whitefish	Coregonus lavaretus	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х
Rygge airport	2014	Perch	Perca fluviatilis	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х			Х		Х		Х	
Rygge airport	2015	Perch	Perca fluviatilis	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х			Х		Х		Х	
Rygge airport	2016	Perch	Perca fluviatilis	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х		Х	х	Х	Х	Х	

Site	Year	Species	Latin	PFNS	PFDS	PFDoDS	FOSA	MeFOSA	EtFOSA	MeFOSE	EtFOSE F	OSAA MeFOSAA	EtFOSAA	4:2 FTS	6:2 FTS	8:2 FTS	10:2 FTS	12:2 FTS	14:2 FTS	PF-3,7- DMOA
Femunder	ו 2014 ו	Brown trout	Salmo trutta		х	Х	Х	Х	Х	Х	Х	Х	Х		Х					
Femunder	ו 2015 ו	Brown trout	Salmo trutta		х	Х	Х	Х	Х	Х	Х	Х	Х		Х	Х				
Femunder	n 2016	Brown trout	Salmo trutta	Х	х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х				
Femunder	ו 2017 ו	Brown trout	Salmo trutta	Х	х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х				
Femunder	1 2018 I	Brown trout	Salmo trutta	Х	х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х			
Femunder	1 2019	Brown trout	Salmo trutta	Х	х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х			
Femunder	2014	Whitefish	Coregonus Iavaretus		х	х	х	х	х	Х	х	х	х		х					
Femunder	2015	Whitefish	Coregonus lavaretus		х	х	х	х	х	Х	х	х	х		Х	х				
Femunder	2016	Whitefish	Coregonus lavaretus	х	х	х	Х	х	х	х	х	х	х	х	х	х				
Mjøsa	2014	Brown trout	Salmo trutta		Х	Х	Х	Х	Х	Х	Х	Х	Х		Х					
Mjøsa	2015	Brown trout	Salmo trutta		х	Х	Х	Х	Х	Х	Х	Х	Х		Х	Х				
Mjøsa	2016	Brown trout	Salmo trutta	Х	х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х				
Mjøsa	2017	Brown trout	Salmo trutta	Х	х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х				
Mjøsa	2018	Brown trout	Salmo trutta	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х			
Mjøsa	2019	Brown trout	Salmo trutta	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х			
Mjøsa	2014	European smelt	Osmerus eperlanus		х	х	Х	х	х	х	х	х	х		х					
Mjøsa	2015	European smelt	Osmerus eperlanus		х	х	Х	х	х	х	х	х	х		х	х				
Mjøsa	2016	European smelt	Osmerus eperlanus	х	х	х	Х	х	х	х	х	х	х	х	х	х				
Mjøsa	2017	European smelt	Osmerus eperlanus	х	х	х	Х	х	х	х	х	х	х	х	х	х				
Mjøsa	2018	European smelt	Osmerus eperlanus	х	х	х	Х	х	х	х	х	х	х	х	х	х	х			
Mjøsa	2019	European smelt	Osmerus eperlanus	х	х	х	Х	х	х	х	х	х	х	х	х	х	х			
Mjøsa	2014	Vendace	Coregonus albula		Х	х	Х	Х	Х	Х	Х	Х	Х		Х					
Mjøsa	2016	Vendace	Coregonus albula	Х	Х	х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х				
Mjøsa	2017	Vendace	Coregonus albula	Х	Х	х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х				
Mjøsa	2018	Vendace	Coregonus albula	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х			
Mjøsa	2019	Vendace	Coregonus albula	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х			

Table S5 (continuation). Targeted PFAS in liver samples at the different sites and species (X marks targeted PFAS).

Site	Year	Species	Latin	PFNS	PFDS	PFDoDS	FOSA	MeFOSA	EtFOSA	MeFOSE	EtFOSE	FOSAA MeFOSAA	EtFOSAA	4:2 FTS	6:2 FTS	8:2 FTS	10:2 FTS	12:2 FTS	14:2 FTS	PF-3,7- DMOA
Randsfjorden	2015	Arctic char	Salvelinus alpinus		х	х	х	х	х	х	х	х	х		х	х				
Randsfjorden	2016	Arctic char	Salvelinus alpinus	х	х	х	х	х	х	х	х	Х	х	х	х	х				
Randsfjorden	2014	Brown trout	Salmo trutta		Х	Х	х	Х	Х	Х	Х	Х	Х		Х					
Randsfjorden	2015	Brown trout	Salmo trutta		х	Х	х	Х	Х	Х	Х	Х	Х		Х	Х				
Randsfjorden	2016	Brown trout	Salmo trutta	Х	х	х	х	Х	Х	Х	х	Х	Х	Х	Х	Х				
Randsfjorden	2014	European smelt	Osmerus eperlanus		х	х	х	х	х	х	х	х	х		Х					
Randsfjorden	2015	European smelt	Osmerus eperlanus		х	х	х	х	х	х	х	х	х		Х	х				
Randsfjorden	2016	European smelt	Osmerus eperlanus	х	х	х	х	х	х	х	х	х	х	х	х	х				
Tyrifjorden	2014	Perch	Perca fluviatilis		х	Х	х	Х	Х	Х	Х	Х	Х		Х					
Tyrifjorden	2015	Perch	Perca fluviatilis		х	х	х	Х	Х	Х	х	Х	Х		Х	Х				
Tyrifjorden	2016	Perch	Perca fluviatilis	Х	х	х	х	Х	Х	Х	х	Х	Х	Х	Х	Х				
Tyrifjorden	2018	Arctic char	Salvelinus alpinus	х	х	х	х	х	х	х	х	x x	х	х	х	х	х	х	х	
Tyrifjorden	2018	Bream	Abramis brama	Х	х	Х	х	Х	Х	Х	Х	х х	Х	Х	Х	Х	Х	Х	Х	
Tyrifjorden	2018	Perch	Perca fluviatilis	Х	Х	Х	Х	Х	Х	Х	Х	x x	Х	Х	Х	Х	Х	Х	Х	

Site	Year	Species	Latin	PFNS	PFDS	PFDoDS	FOSA	MeFOSA	EtFOSA	MeFOSE	E EtFOSE	FOSAA	MeFOSAA	EtFOSAA	4:2 FTS	6:2 FTS	8:2 FTS	10:2 FTS	12:2 FTS	14:2 FTS	PF-3,7- DMOA
Tyrifjorden	2018	Pike	Esox lucius	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	
Tyrifjorden	2018	Roach	Rutilus rutilus	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	
Tyrifjorden	2018	Trout	Salmo trutta	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	
Tyrifjorden	2018	Whitefish	Coregonus lavaretus	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	
Rygge airport	2014	Perch	Perca fluviatilis		Х	Х	Х	Х	Х	Х	Х		Х	Х		Х					
Rygge airport	2015	Perch	Perca fluviatilis		Х	Х	Х	Х	Х	Х	Х		Х	Х		Х	Х				
Rygge airport	2016	Perch	Perca fluviatilis	Х	Х	Х	Х	Х	Х	Х	Х		Х	Х	Х	Х	Х				

Table S6. Mean concentrations of ∑PFAS 17 in liver samples of various fish species at the different sites. Significant differences (Kruskal-Wallis and Bonferroni correction) are indicated by different significance letters. Limit of significance was set to 0.05. Mean concentrations are shown with the standard error of the mean (SEM).

Site, Species	Significance letter	Mean concentration (μg kg ⁻¹)
Rygge airport, Perch	а	298.9±37.6
Lake Tyrifjorden, Arctic char	ab	232.5°
Lake Tyrifjorden, Perch	ab	287.5±37.3
Lake Tyrifjorden, Brown trout	ab	241.6±58.9
Lake Tyrifjorden, Bream	ab	167.5±9.5
Lake Tyrifjorden, Whitefish	ab	181.4±52.7
Lake Tyrifjorden, Pike	ab	121.8±17.1
Lake Tyrifjorden, Roach	ab	90.5±21.9
Lake Randsfjorden, Brown trout	b	71.4±10.7
Lake Femunden, Brown trout	b	58.9±7.2
Lake Mjøsa, Brown trout	b	41.8±3.2
Lake Mjøsa, European smelt	b	36.9±3.2
Lake Randsfjorden, Arctic char	bc	27.7±4.5
Lake Randsfjorden, European smelt	bc	21.6±2.0
Lake Femunden, Whitefish	bc	20.6±1.6
Lake Mjøsa, Vendace	С	9.7±1.1

^a Only one sample

Table S7. Mean concentrations of Σ PFAS 7 in muscle samples of various fish species at the different sites. Significant differences (Kruskal-Wallis and Bonferroni correction) are indicated by different significance letters. The level of significance was set to 0.05. Mean concentrations are shown with the standard error of the mean (SEM).

Sita Spacias	Significance	Mean concentration
Site, species	letter	(µg kg ⁻¹)
Oslo Airport, Pike	а	22.9±1.25
Fagernes, Perch	а	64.4±13.3
Rygge airport, Perch	а	20.0±2.6
Evenes, Arctic char	а	19.1±2.6
Rygge airport, Pike	а	22.1±6.1
Lake Tyrifjorden, Perch	а	15.0±1.6
Evenes, Brown Trout	а	18.8±2.6
Rygge airport, Zander	а	13.0±2.5
Oslo airport, Brown trout	а	271.5±118.4
Oslo airport, Squalius cephalus	ab	7.9 ^a
Fagernes, Brown Trout	ab	11.3±1.5
Lake Tyrifjorden, Arctic char	ab	5.9°
Fagernes, Whitefish	ab	14.0±4.3
Lake Tyrifjorden, Pike	ab	5.4±0.9
Lake Tyrifjorden, Brown Trout	ab	5.0±1.2
Lake Mjøsa, European Smelt	b	4.1±0.3
Lake Mjøsa, Brown Trout	b	3.2±0.2
Lake Randsfjorden, Arctic Char	b	1.6ª
Lake Randsfjorden, Brown Trout	b	1.4±0.1
Lake Femunden, Whitefish	b	1.2±0.004
Lake Randsfjorden, European Smelt	b	1.2±0.04

^a Only one sample

Table S8. Mean values in ratios between PFUnDA and PFDA in brown trout livers. Significant differences (Kruskal-Wallis and Bonferroni correction) are indicated by different significance letters. The level of significance was set to 0.05. Mean values are shown with the standard error of the mean (SEM).

Site, Species	Mean value	Significance letter
Lake Randsfjorden	5.0±0.3	а
Lake Femunden	4.9±0.3	а
Lake Mjøsa	2.8±0.1	b
Lake Tyrifjorden	1.8±0.3	b

Table S9. Mean values in ratios between PFTrDA and PFDoDA in brown trout livers. Significant differences (Kruskal-Wallis and Bonferroni correction) are indicated by different significance letters. The level of significance was set to 0.05. Mean values are shown with the standard error of the mean (SEM).

Site, Species	Mean value	Significance letter
Lake Randsfjorden	4.3±0.4	а
Lake Femunden	4.7±0.3	а
Lake Mjøsa	1.7±0.1	b
Lake Tyrifjorden	0.7±0.3	b

Supplementary figures

Figure S1. Overview map showing the investigated point sources, AFFF sources (green dots); production of paper products (orange dot); urban runoff, and mixed sources (black dot); and long range transport (purple dots): 1) Oslo Airport; 2) Evenes Airport; 3) Fagernes Airport; 4) Rygge Airport; 5) Lake Tyrifjorden; 6) Lake Mjøsa; 7) Lake Femunden; and 8) Lake Randsfjorden.

Figure S2. Principal Component Analysis (PCA) for PFAS profiles in Brown trout muscle from two sites affected by AFFF (Evenes airport and Fagernes airport), lake Mjøsa, polluted by diffuse sources including industry, WWTP, and urban runoff, lake Randsfjorden that was considered to receive the majority of PFAS pollution from long range transport, and lake Tyrifjorden polluted by PFAS from production of paper products. The score plot is shown to the left and the loading plot is shown to the right. In the loading plot, PFCA are coloured purple and pink, PFSA are coloured green, and preFOS are coloured yellow. Only PFAS targeted at all sites and detected above the LOQ in at least one sample were included. Concentrations below the LOQ were treated as 0.

Figure S3. Principal Component Analysis (PCA) for PFAS profiles in perch muscle from two sites affected by AFFF (Fagernes airport and Rygge airport), and lake Tyrifjorden polluted by PFAS from production of paper products. The score plot is shown to the left and the loading plot is shown to the right. In the loading plot, PFCA are coloured purple and pink, PFSA are coloured green, and preFOS are coloured yellow. Only PFAS targeted at all sites and detected above the LOQ in at least one sample were included. Concentrations below the LOQ were treated as 0.

Figure S4. Principal Component Analysis (PCA) for PFAS profiles in perch muscle from Fagernes airport, polluted by AFFF, and lake Tyrifjorden polluted by PFAS from production of paper products. The score plot is shown to the left and the loading plot is shown to the right. In the loading plot, PFCA are coloured purple and pink, PFSA are coloured green, and preFOS are coloured yellow. Only PFAS targeted at all sites and detected above the LOQ in at least one sample were included. Concentrations below the LOQ were treated as 0.

Figure S5. Principal Component Analysis (PCA) for PFAS profiles in pike muscle from two sites affected by AFFF (lake Vansjø (Rygge airport) and Oslo airport), and lake Tyrifjorden polluted by PFAS from production of paper products. The score plot is shown to the left and the loading plot is shown to the right. In the loading plot, PFCA are coloured purple and pink, PFSA are coloured green, and preFOS are coloured yellow. Only PFAS targeted at all sites and detected above the LOQ in at least one sample were included. Concentrations below the LOQ were treated as 0.

Figure S6. Overview of PFAS detections in liver (blue) and muscle (red) for target PFAS in samples of perch and trout from Lake Tyrifjorden (data from Langberg et al. (2020)).

References

Blytt, L. D. and Stang, P. (2019) *Report 242/2018, Organiske miljøgifter i norsk avløpsslam – Resultater fra undersøkelsen i 2017/18, In Norwegian.* Available at: https://norskvann.no/index.php/component/hikashop/produkt/845-a242-organiske-miljogifter-i-norsk-avlopsslam---resultater-fra-undersøkelsen-i-2017-18?Itemid=780.

Fjeld, E.; Bæk, K.; Rundberget, J. T.; Schlabach, M. and Warner, N. A. (2017) *Miljøgifter i store norske innsjøer, 2016. In Norwegian. Report M-807. The Norwegian Institute for Water Research (NIVA) and the Norwegian Institute for Air Research (NILU).*

Jonsson, N.; Næsje, T. F.; Jonsson, B.; Saksgård, R. and Sandlund, O. T. (1999) 'The influence of piscivory on life history traits of brown trout', *Journal of Fish Biology*, 55(6), pp. 1129–1141. doi: 10.1006/jfbi.1999.1115.

Kassambara, A. and Mundt, F. (2017) 'factoextra: Extract and Visualize the Results of Multivariate Data Analyses'. Available at: https://cran.r-project.org/package=factoextra.

Langberg, H. A.; Breedveld, G. D.; Slinde, G. A.; Grønning, H. M.; Høisæter, Å.; Jartun, M.; Rundberget, T.; Jenssen, B. M. and Hale, S. E. (2020) 'Fluorinated precursor compounds in sediments as a Source of perfluorinated alkyl acids (PFAA) to Biota', *Environmental Science & Technology*, 54(20), pp. 13077–13089. doi: 10.1021/acs.est.0c04587.

Lê, S.; Josse, J. and Husson, F. (2008) '{FactoMineR}: A Package for Multivariate Analysis', *Journal of Statistical Software*, 25(1), pp. 1–18. doi: 10.18637/jss.v025.i01.

de Mendiburu, F. (2019) 'agricolae: Statistical Procedures for Agricultural Research'. Available at: https://cran.r-project.org/package=agricolae.

Næsje, T. F.; Forseth, T.; Saksgård, R.; Hårsaker, K. and Sandlund, O. T. (1996) *Production and management of piscivorous brown trout in Lake Femund. Annual report 1995. NINA Oppdragsmelding 436. The Norwegian Institute for Nature Research (NINA).*

R Core Team (2017) 'R: A language and environment for statistical computing'. Vienna, Austria. Available at: https://www.r-project.org/.

Sandlund, O. T.; Grøndahl, F. A.; Kjellberg, G. and Næsje, T. F. (2017) 'Variabel livshistorie hos krøkle (*Osmerus eperlanus*) i Mjøsa og Randsfjorden. In Norwegian with an English abstract', *Vann* (*Norwegian Journal*), 01, pp. 81–92.

Spikkeland, I.; Kinsten, B.; Kjellberg, G.; Nilssen, J. P. and Väinölä, R. (2016) 'The aquatic glacial relict fauna of Norway – an update of distribution and conservation status', *Fauna Norvegica*, 36(51), pp. 51–65. doi: 10.5324/fn.v36i0.1994.