Electronic Supplementary Material (ESI) for Environmental Science: Processes & Impacts. This journal is © The Royal Society of Chemistry 2022

Supplementary information

Selenium concentration in herring from the Baltic Sea tracks decadal

and spatial trends in external sources

Anne L. Soerensen¹, Aryeh Feinberg², Amina T. Schartup³

1) Department of Environmental Research and Monitoring, Swedish Museum of Natural History, Stockholm, Sweden

2) Institute for Data, Systems, and Society, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA

3) Scripps Institution of Oceanography, University of California San Diego, La Jolla, California, USA

Content

Text S1.	Differences between sexes
----------	---------------------------

- Table S1. Names and coordinates for stations used in the study
- Figure S1. Correlation between Se muscle concentration and biological.
- Table S2.
 Compilation of overlapping data on muscle and liver Se concentration.
- Figure S2. Correlation between muscle and liver Se samples.
- Table S3.Data used for the calculation of Se discharge load from terrestrial sources.
- Table S4.Water Se concentrations in lakes and streams between 1977 and 2012.
- Table S5. Tissue wet weights (g) and fish lengths (cm) for the study at Lilla Vartan.
- Figure S3. Stream Se concentrations from 1998-2001 in countries around the Baltic Sea.
- Figure S4. Mean and standard deviation of the historic time series for Se in.
- Figure S5. Modeled deposition to the Baltic Sea indicating the source of the Se.
- Table S6.Calculation of Se source load changes between 1980 and 2010 and herring muscle
Se decrease.
- Figure S6. Temporal change in phosphate and nitrogen concentrations in Dalarälven.

Text S 1. Differences between sexes

We find that, except for the gonads, the difference between Se concentrations in female and male tissues are less than 23% (average 10% difference) across tissues and only 6% for the whole fish. While the Se concentration is higher in female gonads, the size of the gonads is larger in males (female: 0.89 g (range: 0.29-1.80); male: 2.05 g (range: 0.67-3.8); SI Table S4) resulting in the total Se mass found in gonads to be similar (0.66μ g; 0.70μ g). The gonads change size depending on the fish reproductive phase. Based on the size of the gonads all specimen are likely in the early- to midmaturation phase where gonad weight is increasing [*Bucholtz et al.*, 2008]. The result indicates that the increase in size of the reproductive organs might happens without an additional transfer of Se resulting in a dilution of Se in the tissue. We conclude that there is no large difference in herring concentration between the sexes for the tissue of interest to this study but that reproductive state can play a role for the gonad concentration.

Station	Latitude	Longitude	Basin
Ranefjarden	65.76	22.42	Bothnian Bay
Harufjarden	65.58	22.88	Bothnian Bay
Kinnbacksfjarden	64.85	21.27	Bothnian Bay
Holmoarna	63.68	20.88	Bothnian Sea
Gaviksfjarden	63.13	18.64	Bothnian Sea
Langvindsfjarden	61.77	17.46	Bothnian Sea
Bothnian Sea offshore	61.25	19.5	Bothnian Sea
Angskarsklubb	60.53	18.16	Bothnian Sea
Sea of Åland offshore	60.25	19.35	Bothnian Sea
Lagno	59.43	18.63	Northern Baltic Proper
Northern Baltic Proper offshore	58.75	20.5	Northern Baltic Proper
Landsort	58.69	18	Northern Baltic Proper
Byxelkrok	57.41	16.99	Southern Baltic Proper
Utlangan	56.01	15.83	Southern Baltic Proper
Hanobukten	55.76	14.29	Southern Baltic Proper
Eastern Bornholm basin offshore	55.75	17.5	Southern Baltic Proper
Abbekas	55.32	13.61	Southern Baltic Proper
Vaderoarna	58.55	10.96	Skagerak
Fladen	57.2	11.81	Kattegat
Kullen	56.33	12.38	Kattegat
Lilla Vartan	59.35	18.13	Stockholm Archipelago

Table S 1. Names and coordinates for stations used in the study. Data source: Danielsson et al. [2018]; Enhus et al. [2011]; Soerensen and Faxneld [2020]

Figure S 1. Correlation between Se muscle concentration and biological variables from the retrospective time series indicating the effect of year but no systematic effect of age, length, or weight of herring.

Site	Year	n in sample pool	Se muscle (µg g⁻¹ ww)	Muscle (% dw ww ⁻¹)	Se muscle (µg g⁻¹ dw)	Se liver (µg g⁻¹ dw)	K liver/muscle
Angskarsklubb	2009	12	0.17	21.9 ^A	0.77	5.25	6.82
Angskarsklubb	2010	12	0.13	21.3 ^A	0.63	5.60	8.89
Utlangan	2009	12	0.20	20.9 ^A	0.96	8.20	8.54
Landsort	2006/2009 ^B	12	0.24	21.9	1.10	6.36	5.78
Lilla Vartan females	2016	25			0.52	3.81	7.33
Lilla Vartan males	2016	25			0.45	3.80	8.44
Lilla Vartan mixed sexes ^c	2016	12			0.48	3.34	6.96
All samples							7.49

Table S 2. Compilation of overlapping data on muscle and liver Se concentration and individual conversion factors (k).

A) Muscle dw/ww ratio is extracted from the average of 12 herring muscle samples from the Swedish monitoring program of the given year and site. The ratio is thus from the same site and year but from different fish than those from which the muscle sample for Se analysis was taken from.

B) In Landsort, there was no overlap between muscle data in the retrospective dataset and liver samples in the Swedish monitoring program, we therefore combined the latest year in the retrospective time series (2006) with the earliest year from the monitoring program (2009). For Landsort's herring, the muscle dw/ww ratio was measured on the same fish analyzed for Se.

C) In addition to the 2x25 fish collected for the tissue study, 12 herring (6 female and 6 male) were collected and muscle, liver and stomach were analyzed for Se in each fish individually using the same method used for the tissue study. In order to avoid combining pooled samples with individual samples when calculating the average k, we create a "pooled sample" by using the average concentration for the 12 individual herring.

Figure S 2. Scatterplot of muscle and liver Se concentrations. The solid line represent the conversion factor (k) of 7.49.

Table S 3.	Data used for	the calculation	of Se discharge	load from terr	estrial sources.
------------	---------------	-----------------	-----------------	----------------	------------------

River basin	Catchment area (km ²)	River discharge (m ³ s ⁻¹)	Se (µg L ⁻¹)	Se input (Mg a ⁻¹)	Surface area (km ²)	Se input (µg m² a⁻¹)
Bothnian Bay and Sea	481440	5792	0.16	29.3	115516	253
Indalsälven	25518	606	0.07	1.3		
Torne River	39705	564	0.20	3.6		
Kemijoki	51036	739	0.15	3.4		
Additional input		3883	0.17	20.4		
Baltic Proper	574545	3670	0.55	63.9	211069	303
Venta	11624	70	0.36	0.8		
Nemunas	92318	634	0.36	7.3		
Vistula	193347	1344	0.63	26.7		
Pregola	14783	86	0.44	1.2		
Oder	117862	514	0.94	15.1		
Additional Sweden		571	0.30	5.3		
Additional Southern Baltic Coast		451	0.51	7.3		
Kattegat (including Belt Sea)	86980	1555	0.37	18.3	42408	431
Göta Älv	48326	732	0.35	8.0		
Additional Kattegat	31204	611	0.36	6.9		
Additional Belt Sea	27365	212	0.50	3.3		
Gulf of Finland	413100	3687	0.18	21.5	29600	727
Neva River	286553	2109	0.18	11.7		
Narva River	56797	339	0.13	1.4		
Additional input		1239	0.22	8.5		
Gulf of Riga	127840	1141	0.25	8.9	16330	543
Gauja	8652	67	0.23	0.5		
Daugava	86052	656	0.28	5.8		
Lielupe	17876	76	0.45	1.1		
Additional input		342	0.14	1.5		
Baltic Sea	1605350	15845	0.28	142	415266	342

Historic Se concentrations	year	ng L ⁻¹	Reference
Sweden 25 lakes	1977-1978	103±42	[Remberger, 1980]
Finland 1 lake	1978	109	[Remberger, 1980]
Sweden streams (n=2)	1991	129/86	[<i>Wang et al.</i> , 1994]
Finland headwater streams (n=207)	1991-1992	73±27	[Wang et al., 1994]
Finland 7 lakes	1992	82	[Alfthan and Aro, 2005]
Sweden 3 lakes	1997	51±18	[Hultberg, 2002]
Finland 7 lakes	1999	96	[Alfthan and Aro, 2005]
Sweden 51 streams (filtered $< 0.45 \mu m$)	1998-2001	218±165	[Salminen et al., 2005]
Finland 65 streams (filtered < 0.45µm)	1998-2001	176±73	[Salminen et al., 2005]
Denmark 5 streams (filtered < 0.45µm)	1998-2001	554±185	[Salminen et al., 2005]
Germany 74 streams (filtered < 0.45µm)	1998-2001	577±567	[Salminen et al., 2005]
Poland 56 streams (filtered < 0.45µm)	1998-2001	713±365	[Salminen et al., 2005]
Estonia 11 streams (filtered < 0.45µm)	1998-2001	143±60	[Salminen et al., 2005]
Latvia 7 streams (filtered < 0.45µm)	1998-2001	260±92	[Salminen et al., 2005]
Lithuania 14 streams (filtered < 0.45µm)	1998-2001	369±108	[Salminen et al., 2005]
Sweden 1 stream (n=3)	2010-2012	95	[<i>Lindell</i> , 2015]

Table S 4. Water Se concentrations in lakes and streams between 1977 and 2012.

Tissue		Female samples	Male samples	
	Ν	25	25	
	Muscle with skin (g)	13 (12-16)	12 (11-14)	
	Muscle (g)	11 (9.4-12)	10 (8.5-12)	
	Skin (g)	1.2 (0.94-1.6)	1.3 (1.1-1.7)	
	Stomach (g)	2.5 (1.9-3.7)	2.0 (1.3-3.0)	
	Gills (g)	1.3 (1.1-1.8)	1.2 (0.89-1.5)	
	Gonads (g)	0.89 (0.29-1.8)	2.1 (0.67-3.8)	
	Eyes (g)	0.86 (0.59-1.1)	0.88 (0.65-1.2)	
	Spine (g)	0.14 (0.10-0.18)	0.20 (0.12-0.30)	
	Liver (g)	0.72 (0.47-0.86)	0.55 (0.41-0.74)	
	Kidney (g)	0.28 (0.15-0.36)	0.27 (0.16-0.34)	
	Brain (g)	0.18 (0.13-0.21)	0.17 (0.13-0.22)	
	Carcass(g)	5.5 (4.2-6.5)	5.3 (4.4-6.6)	
	Body weight (g)	40 (36-45)	38 (35-44)	
	Total length (cm)	18 (17-19)	18 (17-19)	

Table S 5. Tissue wet weights (g) and fish lengths (cm) for the study at Lilla Vartan [Danielsson et al., 2018]. Mean values and ranges in parenthesis.

Figure S 3. Stream Se concentrations from 1998-2001 in countries around the Baltic Sea from Salminen et al. [2005]. Observations shown in grey are >1.1 μ g L⁻¹. Also indicated in grey are the watershed border.

Figure S 4. A) Mean and standard deviation of the historic time series for Se in muscle, B) results from ANCOVA analysis indicating that there is a significant difference between the concentrations from the three sites in the retrospective study (Levene's test was not significant, which implies that the variance is homogenous).

Figure S 5. A) *Total modeled deposition to the Baltic Sea indicating the source of the Se, B) the contribution of each source as a function of the total deposition.*

Table S 6. Calculation of Se source load changes between 1980 and 2010 and herring muscle Se decrease. For the riverine slow decrease scenario a 40-50% decrease between 1980 and 2010 is used. To calculate the decrease in herring muscle Se the average of the three first and last year in the time series are used. Since the time series for Landsort is only covering 26 years it is not included here.

Source	1980	2010	decrease	
	Mg a ⁻¹	Mg a⁻¹	%	
Deposition	105	28	73	
Riverine	142	142	0	
Total	247	170	31	
Riverine slow decrease	142	71-85	40-50	
Total slow decrease	247	99-113	54-60	
	µg g⁻¹ ww	µg g⁻¹ ww	%	
Bothnian Sea (Angskarsklubb)	316	160	50	
Southern Baltic Proper (Utlangen)	314	209	34	

Figure S 6. Temporal change in phosphate (PO₄: phosphate) and nitrogen (NO2+NO3: >90% nitrate) concentrations in Dalarälven, the nearest river to the Angskarsklubb station. Similar to the overall estimate for the Bothnian Sea this river shows constant or increasing nutrient inputs during the 1979 to 2010 period (blue color), with possible decreases after 2010 (orange color). Data downloaded from https://miljodata.slu.se/MVM/.

References

Alfthan, G., and A. Aro (2005), Environmental effects of selenium fertilization-Is there a potential risk?, *Proceedings Twenty Years of Selenium Fertilization/Merja Eurola (ed.)*.

Bucholtz, R., J. Tomkiewicz, and J. Dalskov (2008), Manual to determine gonadal maturity of herring (Clupea harengus L.) DTU Aquareport 197-08, *National Institute of Aquatic Resources, Charlottenlund*, 45.

Danielsson, S., A. Bignert, S. Faxneld, E. Nyberg, M. Andersson, D. Jones, E. Kylberg, J. Strömquist, A.-M. Johansson, and P. Hjelmquist (2018), Distribution and conversions of metal-and POP concentrations among various tissues in herring, Swedish Museum of Natural History. Enhus, C., E. Boalt, and A. Bignert (2011), The relationship between mercury and selenium in

Baltic herring-a retrospective study (Report 4:2011), Swedish Museum of Natural History. Hultberg, H. (2002), Treatment of lakes and storage reservoirs with very low dosages of selenium to

reduce methyl mercury in fish, edited, IVL Svenska Miljöinstitutet.

Lindell, M. (2015), Metallbudget och källfördelning för Vättern, utvärdering på landskapsnivå 2010-2012 (Metal budget and source distribution for Vättern, evaluation at the landscape scale 2010-2012), Länsstyrelsen, Jönköping.

Remberger, M. (1980), *Förekomst och omsättning av selen i inlandsvatten*, IVL Svenska Miljöinstitutet.

Salminen, R., et al. (2005), *Geochemical Atlas of Europe. Part 1, Background information, methodology and maps*, 526 pp., Geological survey of Finland Espoo, http://weppi.gtk.fi/publ/foregsatlas/ForegsData.php.

Soerensen, A. L., and S. Faxneld (2020), The Swedish National Monitoring Programme for Contaminants in Marine Biota (until 2019 year's data)-Temporal trends and spatial variations. Raport nr 13:2020, Swedish Museum of Natural History, Department of Environmental Research and Monitoring.

Wang, D., G. Alfthan, A. Aro, P. Lahermo, and P. Väänänen (1994), The impact of selenium fertilisation on the distribution of selenium in rivers in Finland, *Agriculture, Ecosystems & Environment*, *50*(2), 133-149.