Supporting information for

The Oxidative Potential of Fresh and Aged Elemental Carbon-containing Airborne Particles: A Review

Yangyang Liu and Chak K. Chan *

Corresponding Author: Chak K. Chan E-mail: <u>chak.k.chan@cityu.edu.hk</u>

School of Energy and Environment, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong, China

Supplementary Text 1: The most popular DTT-based protocols for determining the OP of ECCAPs in cited references in this article.

Since metal ions can trigger the decay of DTT chemical reagents, metal chelators Chelex (Cho's protocol, PA) and EDTA (Li's protocol, PB) were initially added into the buffering extraction solution to capture the metal ions before the incubation stage. An apparent difference between those two approaches is that Cho et al. employed trichloroacetic acid (TCA) to terminate the DTT consumption and then injected DTNB to convert the remaining DTT to form 2-nitro-5-thiobenzoic (TNB), which has a large absorption coefficient (14,150 M⁻¹ cm⁻¹) at 412 nm^{1, 2}. Without using TCA before adding DTNB and they reported that the absorbance of TNB is stable within 2 h due to fast interactions between DTT and DTNB³. Therefore, Cho's DTT-based protocol for determining OP brings fewer uncertainties when the number of samples is large and the stock solution (without TCA) needs to be kept for a relatively long time before measurement. While some studies have slight modifications in the extraction solvent, incubation conditions, and the sequence of adding chemical reagents, etc., they almost follow the sequence of single extraction procedure using H₃PO₄ buffering solution (pH=7.3 or 7.4), incubation at 37 °C (physiologically relevant temperature), and final spectroscopic UV-VIS measurements of 2-nitro-5-thiobenzoic (TNB) at the wavelength of 412 nm. There are also improved methodologies to more precisely capture the overall OP of ECCAPs such as employing multiple extraction procedures containing water, methanol, and dichloromethane (DCM) in the specific orders⁴, using high extraction efficiency of Teflon filters in ultrasonic bath⁵, the use of more realistic solvent proxy of simulated lung fluid (SLF) to mimic biological tissue environment⁶, which take both chemical redox and bioaccessibility into consideration⁷.

•	-		
Abbreviation	Full Name and Description		
1,2-NQ	1,2-naphthoquinone		
1,4-NQ	1,4-naphthoquinone		
BAA	Benz(a)anthracene		
BD	1,1'-biphenyl-2,2'-dicarboxaldehyde		
CRY	Chrysene		
DEP	Diesel Exhaust Particles		
DPF	Diesel Particle Filter		
Fresh UBC with 14 nm average size	UBC-Fresh (14 nm)		
FS101	Commercial Black Carbon Proxy FS101		
FW2	Commercial Black Carbon Proxy FW2		
Lab Soot(H)	Lab-produced Soot using Hexane as fuel		
Lab Soot(M)	Lab-produced Soot using Methanol as fuel		
Lab Soot(P)	Lab-produced Soot using Propane as fuel		
Lab Soot(P)-Bz[e]p+Ozone	Lab Soot(P)-Coated with benzo[e]pyrene		
LGEC	Lab-generated Elemental Carbon		
NAP	Naphthalene		
A/F	Air/Fuel		
РНЕ	Phenanthrene		
PQ	Phenanthrenequinone		
Printex 90	Commercial Black Carbon Proxy Printex		
PYR	Pyrene		
SB4A	Special Black 4A		
SB4A-Benzoquinone	SB4A-Coated with Benzoquinone		
SOA	Secondary Organic Aerosol		
SRM 2975	Commercial Diesel PM (SRM 2975)		
SWCNTs	Single-Walled Carbon Nanotubes		
SWCNTs-Benzoquinone	SWCNTs-Coated with Benzoquinone		
SWCNTs-COOH	SWCNTs functionalized by COOH groups		
SWCNTs-OH	SWCNTs functionalized by OH groups		
Synthetic Air	Synthetic air with sulfur dioxide, nitrogen dioxide, ozone		
	concentration levels comparable to those in ambient air		
UBC	Printex U Black Carbon		
UBC(Ozone)+Sulfur Dioxide	UBC treated with ozone and then sulfur dioxide		
UBC-1,4-NQ	UBC-Coated with 1,4-NQ		
UBC-Benzoquinone	UBC-Coated with Benzoquinone		
UBC-Sulfate	UBC-Coated with Sulfate		
UD	Ultrasonic Dispersion		
Vis	Visible Light Irradiation		
WIOC	Water Insoluble Organic Carbon		

Table S1. Glossary and Abbreviation Description

ECCAPs Types	Conditions	Features	Ref.
Laboratory-produced	Aging-1	150 ± 30 ppb of O ₃	8
Soot (propane)-Air/Fuel	Aging-2	Air+ Visible light	
(8.83)		(480-680 nm)	
	Aging-3	150 ± 30 ppb of O ₃ +	
		Visible light	
		(480-680 nm)	
Laboratory-produced	Aging-1	150 ± 30 ppb of O ₃	8
Soot (propane)-Air /Fuel	Aging-2	Air+ Visible light	
(11.77)		(480-680 nm)	
	Aging-3	150 ± 30 ppb of O ₃ +	
		Visible light	
		(480-680 nm)	
Printex U black carbon	Aging-1	100 ppm of O ₃ + UV	9
(UBC)		(185 nm)	
Laboratory-produced	Aging-1	100 ppm of O ₃ + UV	
Soot(n-hexane)		(185 nm)	
Diesel Soot	Aging-1	100 ppm of O ₃ + UV	
		(185 nm)	
Graphite	Aging-1	100 ppm of $O_3 + UV$	
		(185 nm)	
Laboratory-produced	Aging-1	150 ± 30 ppb of O_3	10
Soot (propane)-Air/Fuel			
(8.83)			
Laboratory-produced	Aging-1	150 ± 30 ppb of O_3	
Soot (propane)-Air /Fuel			
(11.77)			
Printex U black carbon	Aging-1	Ozonized UBC (64 mg	11
(UBC)		m^{-3} , 2 hr) + SO ₂ (86 mg	
		m ⁻³ , synthetic air	
		dilution), $RH = 40\%$)-	
		Short Exposure (1 h)	
	Aging-2	Ozonized UBC (64 mg	
		m^{-3} , 2 hr) + SO ₂ (86 mg	
		m ⁻³ , synthetic air	
		dilution), $RH = 40\%$)-	
		Long Exposure (6 h)	
Printex U black carbon	Aging-1	^a Ambient Air	12
(UBC)	(2)	(Synthetic Air)	

Table S2. Summary of the Aging Conditions conducted for ECCAPs consideredin the review article

SWCNTs	-		
Hexane soot			
Special Black 4A (SB4A)			
	Aging-3	^b OA/organic Vapors	
	Aging-4	°NO ₂	
	Aging-5	Zero Air	
	Aging-6	°SO ₂	
	Aging-7	Toluene	
Laboratory-produced Soot	Aging-1	28 ppm of O ₃	13
(methane)- Oxygen/Fuel			
(3.02)			
Printex U black carbon	Aging-1	100 ppm of O ₃ , 2h	14
(UBC)			
SWCNTs	Aging-1	(37 ± 3) % of RH, 30	15
		ppb of O ₃ exposure, 1-7	
		days	
	Aging-2	(37 ± 3) % of RH,	
		$(0-1.1 \times 10^{11} \text{ molecules})$	
		cm ^{−3} of •OH exposure,	
		1–7 days equvalent	
		ambient exposure	
Lab Soot (Propane)	Aging-1	$^{d}1.1 \times 10^{12} 1.0 \times 10^{13}$	16
		molecule cm ⁻³ h of O ₃	
	Aging-2	^d 1.0×10 ¹³ -1.3×10 ¹³	
		molecule cm ⁻³ h of O ₃	
	Aging-3	$^{d}1.3 \times 10^{13} - 1.0 \times 10^{14}$	
		molecule cm ⁻³ h of O ₃	
	Aging-4	^d Coated with	
		benzo[e]pyrene,	
		$1.1 \times 10^{12} - 1.0 \times 10^{13}$	
		molecule cm ⁻³ h of O ₃	
	Aging-5	^d Coated with	
		benzo[e]pyrene,	
		$1.0 \times 10^{12} - 1.3 \times 10^{13}$	
		molecule cm^{-3} h of O_3	
	Aging-6	^d Coated with	
		benzo[e]pyrene,	
		$1.3 \times 10^{13} - 1.0 \times 10^{14}$	
		molecule cm ⁻³ h of O ₃	

^aAging process 1 exposes black carbon particles to ambient air. Aging process 2 exposes black carbon to synthetic air that contains O₃, SO₂, and NO₂ at concentrations comparable to that found in the ambient air.

^bThe OA-containing air is derived from the oxidation of toluene (about 60 ppb) by OH (produced by photolysis of H₂O₂).

 $^{c}The flow rate in the cylinders reaches a total flow of 2.0 L min^{-1} (76 mL min^{-1} for 1.44 \times 10^{3} \mu g m^{-3} SO_{2}, 5 mL min^{-1} for 1.04 \times 10^{3} mL min^{-1} for 1.04 \times 10$

 $\mu g \ m^{\text{-3}} \ NO_2,$ balanced with zero air).

^dDTT measurement results of Lab Soot (Propane) upon O₃ exposure of 1.1×10^{12} - 1.0×10^{14} molecule cm⁻³ h were divided into three regimes and their values were averaged accordingly.

Reference:

- H. H. Jiang, C. M. S. Ahmed, A. Canchola, J. Y. Chen and Y. H. Lin, Use of Dithiothreitol Assay to Evaluate the Oxidative Potential of Atmospheric Aerosols, *Atmosphere-Basel*, 2019, 10, DOI: 10.3390/atmos10100571.
- K. E. Berg, L. R. Turner, M. L. Benka-Coker, S. Rajkumar, B. N. Young, J. L. Peel, M. L. Clark, J. Volckens and C. S. Henry, Electrochemical dithiothreitol assay for large-scale particulate matter studies, *Aerosol Science and Technology*, 2019, 53, 268-275, DOI: 10.1080/02786826.2018.1560391.
- M. F. Lin and J. Z. Yu,Dithiothreitol (DTT) concentration effect and its implications on the applicability of DTT assay to evaluate the oxidative potential of atmospheric aerosol samples, *Environ. Pollut.*, 2019, 251, 938-944, DOI: 10.1016/j.envpol.2019.05.074.
- D. Gao, T. Fang, V. Verma, L. Zeng and R. J. Weber, A method for measuring total aerosol oxidative potential (OP) with the dithiothreitol (DTT) assay and comparisons between an urban and roadside site of water-soluble and total OP, *Atmos. Meas. Tech.*, 2017, 10, 2821-2835, DOI: 10.5194/amt-10-2821-2017.
- A. Yang, A. Jedynska, B. Hellack, I. Rooter, G. Hoek, B. Brunekreef, T. A. J. Kuhlbusch, F. R. Cassee and N. A. H. Janssen, Measurement of the oxidative potential of PM_{2.5} and its constituents: The effect of extraction solvent and filter type, *Atmos. Environ.*, 2014, **83**, 35-42, DOI: 10.1016/j.atmosenv.2013.10.049.
- A. Calas, G. Uzu, F. J. Kelly, S. Houdier, J. M. F. Martins, F. Thomas, F. Molton, A. Charron, C. Dunster, A. Oliete, V. Jacob, J. L. Besombes, F. Chevrier and J. L. Jaffrezo, Comparison between five acellular oxidative potential measurement assays performed with detailed chemistry on PM₁₀ samples from the city of Chamonix (France), *Atmos. Chem. Phys.*, 2018, **18**, 7863-7875, DOI:10.5194/acp-18-7863-2018.
- M. Song, S. H. Oh, C. Park and M. S. Bae, Review: Analytical Procedure for Dithiothreitol-based Oxidative Potential of PM_{2.5}, *Asian J. Atmos. Enviro.*, 2021, **15**, 106-118, DOI: 10.5572/ajae.2021.015.
- J. L. Zhu, J. Shang, Y. Y. Chen, Y. Kuang and T. Zhu, Reactive Oxygen Species-Related Inside-to-Outside Oxidation of Soot Particles Triggered by Visible-Light Irradiation: Physicochemical Property Changes and Oxidative Potential Enhancement, *Environ. Sci. Technol.*, 2020, 54, 8558-8567, DOI: 10.1021/acs.est.0c01150.
- Q. Li, J. Shang and T. Zhu, Physicochemical characteristics and toxic effects of ozone-oxidized black carbon particles, *Atmos. Environ.*, 2013, 81, 68-75, DOI: 10.1016/j.atmosenv.2013.08.043.
- 10. J. L. Zhu, Y. Y. Chen, J. Shang, Y. Kuang and T. Zhu, Dithiothreitol (DTT) activity of different fractions of fresh and ozonised soot and quantitative contributions of ozonised products of phenanthrene, *Atmos. Environ.*, 2019, **214**, DOI: 10.1016/j.atmosenv.2019.116835.
- W. W. Xu, Q. Li, J. Shang, J. Liu, X. Feng and T. Zhu, Heterogeneous oxidation of SO₂ by O₃-aged black carbon and its dithiothreitol oxidative potential, *J. Environ. Sci. China*, 2015, **36**, 56-62, DOI: 10.1016/j.jes.2015.02.014.
- H. T. Jiang, Y. C. Liu, Y. Xie, J. Liu, T. Z. Chen, Q. X. Ma and H. He,Oxidation Potential Reduction of Carbon Nanomaterials during Atmospheric-Relevant Aging: Role of Surface Coating, *Environ. Sci. Technol.*, 2019, 53, 10454-10461, DOI: 10.1021/acs.est.9b02062.
- A. L. Holder, B. J. Carter, R. Goth-Goldstein, D. Lucas and C. P. Koshland, Increased cytotoxicity of oxidized flame soot, *Atmos. Pollut. Res.*, 2012, 3, 25-31, DOI: 10.5094/Apr.2012.001.

- 14. Q. Li, J. Shang, J. Liu, W. Xu, X. Feng, R. Li and T. Zhu, Physicochemical characteristics, oxidative capacities and cytotoxicities of sulfate-coated, 1,4-NQ-coated and ozone-aged black carbon particles, *Atmos. Res.*, 2015, **153**, 535-542, DOI: 10.1016/j.atmosres.2014.10.005.
- 15. Y. C. Liu, J. Liggio, S. M. Li, D. Breznan, R. Vincent, E. M. Thomson, P. Kumarathasan, D. Das, J. Abbatt, M. Antinolo and L. Russell, Chemical and Toxicological Evolution of Carbon Nanotubes During Atmospherically Relevant Aging Processes, *Environ. Sci. Technol.*, 2015, **49**, 2806-2814, DOI: 10.1021/es505298d.
- 16. M. Antinolo, M. D. Willis, S. M. Zhou and J. P. D. Abbatt, Connecting the oxidation of soot to its redox cycling abilities, *Nat. Commun.*, 2015, **6**, DOI: 10.1038/Ncomms7812.