A novel Ca/Mn modified biochar recycles P from solution:

mechanisms and phosphate efficiency

Chengwei Wang^{a,b1}, Cheng Qiu^{c1}, Zhengguo Song^b, Minling Gao^{b*} ^aSchool of Environmental Science and Engineering, Tianjin Polytechnic University, No. 399 Binshui West Road, Xiqing District, Tianjin 300387, China ^bDepartment of Civil and Environmental Engineering, Shantou University, No 243 Daxue Road, Shantou, Guangdong Province, 515063, China ^cInstitute of Agricultural Product Quality Standard and Testing Research, Tibet Academy of Agricultural and Animal Husbandry Sciences, Lhasa Tibet 850032, China

*Corresponding author: Minling Gao

E-mail: kyforever2013@163.com

1 Chengwei Wang and Cheng Qiu contributed equally to the work and should be regarded as co-first authors.

1. Materials and methods

1.1 Effects of coexisting anions strength

Analysis of different coexisting ions strength on phosphate (P) adsorption, 0.1, 0.01 M and 0.001 M NaNO₃ were applied to prepare different initial P concentrations (0-75 mg·L⁻¹) to explore the effect of anions on P removal. The adsorbents (each with 0.08 g) were added into the phosphate solutions before shaken at 120 rmp for 24 h.

1.2 Adsorption thermodynamics

The adsorption was performed at the temperature of 15, 25 °C and 35 °C respectively for thermodynamic analysis. The sorption process is same as the isothermal adsorption experiment (adding 0.1 g biochar into 40 mL brown glass bottles that contain 20 mL various initial phosphate concentrations (1-75 mgP·L⁻¹). The equilibrium phosphate concentrations were determined via ultraviolet spectrophotometer.

1.3 Stability analysis of CMBC

0.2 g of the modified biochar (CM₁BC) was added to 20.0 mL solution containing 20.0 mL DI water solution set at various pH values (pH:3, 4, 5, 6, 7, and 8) in brown glass bottles and shaken at 120 rpm (end to end) at an ambient temperature for 24 h. Then, the Subsequently, the suspension was filtered and measured. The phosphate desorption ratio was calculated following Eq.(10):

dissolved amounts
$$= \frac{Ce \times V}{M} \times 1000$$
 (10)

where C_e (mg/L) is the equilibrium concentration of Mn/Ca in the solution. V (mL) is the volume of water, and M (g) is the mass of the CMBC.

2. Results and discussion

2.1. Effect of coexisting ionic strength

Coexisting ions in natural, agricultural or industrial wastewaters may affect the P adsorption capacity due to the coulombic forces or competing adsorption sites. Thus,

it is imperative to explore effects of the coexisting ionic strength on P adsorption. As shown in Fig. S8, the initial P and NO₃⁻ concentrations are ranged between 0 mg·L⁻¹ to 75 mg·L⁻¹ and 0.001 to 0.1 M, respectively, while mass of the modified biochars (CBC, MBC, CM₁BC and CM₂BC) added in the solutions are 4 g·L⁻¹, It is observed that 0.001 and 0.01 M NO₃⁻ have little effect on P adsorption on the four modified adsorbents. In the presence of 0.1 M NO₃⁻, there is a relatively small drop in the P adsorption capacity of the CBC and MBC in this study, which agree with previous observations where La modified vermiculites materials and calcium-activated biochar were used on P adsorption (Huang et al., 2014; Liu et al., 2019). However, the P adsorption capacity of the CM₁BC and CM₂BC decline, but these adsorbents still show a remarkable P sorption capacity when the concentration of NO₃⁻ reached 0.1 M. 2.2 Thermodynamic study

Fig.S9 shows, the P adsorption capacity increased with the increase of the sorption temperatures from 15°C to 35 °C, which imply that higher temperature has a positive effect on P adsorption capacity.

To further evaluate the stability and feasibility of the phosphate adsorption on the adsorbents, three thermodynamic parameters such as Gibbs free energy (ΔG^0), enthalpy (ΔH^0) and entropy (ΔS^0) were calculated by the Eq. (10) and (11):

$$\Delta G^0 = -RT ln K_L \tag{10}$$

$$\Delta G^0 = \Delta H^0 - T \Delta S^0 \tag{11}$$

where R is the universal gas constant (8.314 J·mol⁻¹·K⁻¹), T is the absolute temperature (K), and K_L (L·mol⁻¹) represents the Langmuir adsorption characteristic constant.

The corresponding thermodynamic parameters are shown in Table S4. The CM₁BC for an example, the change in negative values of the ΔG^0 reveal that the phosphate adsorption on CBC, MBC, CM₁BC and CM₂BC were a spontaneous process (Table S4). When the temperature is raised from 15 to 35 °C, there is a drop of ΔG^0 from - 23.57 kJ·mol⁻¹ to -28.40 kJ·mol⁻¹, which showed that the spontaneity increases with the increase of temperatures. The positive value of ΔH^0 (56.61 kJ·mol⁻¹) indicates that

the phosphate adsorption on the CM₁BC sample was an endothermic process, and the adsorbents would possess higher phosphate adsorption with the increasing temperature (Ajmal et al., 2020). Moreover, the higher temperature may increase the diffusion of phosphate ions in solution and enhance the probability of phosphate collision between the active sites and the phosphate ions (Liu et al., 2019). Additionally, the positive value of ΔS^0 (0.241 kJ·mol⁻¹·K⁻¹) elucidates that the randomness of adsorbent-liquid interface increased during the phosphate sorption process with the increase of temperature. The thermodynamic parameters analysis of other adsorbents such as CBC, MBC and CM₂BC agree with CM₁BC (Table S4).

2.3 Stability analysis of CMBC

In order to investigate the stability and potential risk of the adsorbed material, the amount of Ca and Mn released from CMBC was measured in different pH solutions. It can be seen in Fig S10, at low pH values (3.0-5.0) the amount of Ca, Mn released was found to be in the range of 8.6 - 14.4 μ g·g⁻¹ and 1.4 to 3.3 μ g·g⁻¹. Under acidic conditions, Ca, Mn were more readily released, but the overall dissolved amounts were relatively low (Ca: < 15 μ g·g⁻¹; Mn <4 μ g·g⁻¹). The dissolution of Ca and Mn is further reduced as pH > 5.0 (Ca: < 7 μ g·g⁻¹; Mn <1 μ g·g⁻¹). These results indicated that CMBC possesses good stability and relatively low risk.

References:

Ajmal, Z., Muhmood, A., Dong, R., et al.,2020 Probing the efficiency of magnetically modified biomass-derived biochar for effective phosphate removal[J]. J. Environ. Manage. 253, 109730. Huang, W.Y., Li, D., Liu, Z.Q., et al., 2014. Kinetics, isotherm, thermodynamic, and adsorption mechanism studies of La(OH)₃-modified exfoliated vermiculites as highly efficient phosphate adsorbents[J]. Chem. Eng. J. 236, 191-201. Liu, X.N., Shen, F., Qi, X.H., 2019. Adsorption recovery of phosphate from aqueous solution by CaO-biochar composites prepared from eggshell and rice straw[J]. Sci. Total Environ. 666, 694-702.

Available phosphorus (mg·kg ⁻ ¹)	Available potassium (mg·kg ⁻ ¹)	Total nitrogen (%)	Organic matter (%)	рН
10.4	200.0	0.195	3.94	6.25

Table S1 The basic physicochemical characteristics of soil

	Langmuir			F	Freundlich			Sips			
Adsorbents	Q _m (mg·g ⁻¹)	K _L (L·mg ⁻¹)	R _L	R ²	1/n	K _F	R ²	Q _m (mg·g -1)	Ks (L·g ⁻¹)	γ	R ²
CBC	9.15	1.38	0.0096	0.988	0.26	4.07	0.88	9.20	1.35	0.97	0.986
MBC	3.19	0.30	0.0430	0.989	0.18	1.43	0.87	3.53	0.22	0.78	0.991
CM ₁ BC	15.58	1.21	0.0109	0.978	0.16	8.81	0.93	17.23	1.03	0.64	0.984
CM ₂ BC	20.84	0.68	0.0192	0.988	0.28	8.84	0.92	19.68	0.83	0.95	0.992

Table 2 Langmuir, Freundlich and Sips equation parameters of phosphate adsorption onto different biochar

different sorbents						
Adsorbents	pН	$Qm(mg P \cdot g^{-1})$	References			
Ca-Mn impregnated biochar	≈6.5	20.8	This study			
Mg-modified dealbata biochar	7	9.0	Cui et al., 2016			
Fe-activated carbon	6.5	10.8	Kumar et al., 2017			
La-modified carbon	-	13.3	Koilraj et al.,2017			
Fe-Mn oxide	7	18.4	Du et al.,2017			
Ca(OH) ₂ -modified natural	7	0 0	Mituo aigunia at al 2017			
zeolite	7	0.0	Mitrogramms et al.,2017			
Eggshell biochar	-	32.6	Kose et al.,2011			

Table S3 The maximum phosphate sorption capacities reported in the references via

		adsorbents			
Adsorbents	Temperature(K)	$\Delta G^0(kJ/mol)$	$\Delta H^0(kJ/mol)$	$\Delta S^0(kJ/(mol \cdot K))$	
	288.15	-24.05			
CBC	298.15	-26.96	59.68	0.291	
	308.15	-29.86			
MBC	288.15	-19.33			
	298.15	-21.97	56.610	0.264	
	308.15	-24.60			
CM ₁ BC	288.15	-23.57			
	298.15	-25.98	45.90	0.241	
	308.15	-28.40			
CM ₂ BC	288.15	-22.55			
	298.15	-24.76	41.18	0.221	
	308.15	-26.97			

 Table S4 Thermodynamic parameters for phosphate adsorption on different

Fig. S1. Adsorption kinetics of phosphate onto pristine biochar and modified adsorbents.

Fig.S2 Effects of different usage of BC/CMBC/P-CMBC on rape seedling

growth

Fig.S3. Effects of adsorbent dosage on phosphate sorption capacity by CBC, CM_1BC , and CM_2BC

Fig. S4. Phosphate desorption by meas of DI water in various pH

Fig.S5.SEM images and EDS spectra of (a) BC, (b) CBC, (c) MBC, (d) CM₁BC, (e) $\label{eq:CM2BC} CM_2BC$

Fig.S6. SEM images and EDS spectra of (a) P-laden-CBC, (b) P-laden-CM₁BC, (c) P-

laden- CM₂BC

Fig. S7. Pristine biochar and modified adsorbents before or after phosphate sorption: (A)BC, CBC, MBC, CM₁BC, and CM₂BC; (B) P-CBC, P-MBC, P-CM₁BC, and P-CM₂BC

Fig. S8. Effect of coexisting ionic strength on the removal of phosphate by modified adsorbents

Fig. S9. Effect of various temperatures on the removal of phosphate by different adsorbents:(A)CBC; (B)MBC; (C)CM₁BC; (D)CM₂BC

Fig. S10. The concentrations of Ca and Mn in various pH