Electronic Supplementary Material (ESI) for Environmental Science: Processes & Impacts. This journal is © The Royal Society of Chemistry 2022

SUPPLEMENTARY INFORMATION

Fig. S1. Percentage distribution colloidal and LMW fractions in peat porewater of the active layer (thawed 0-30 cm) and the permafrost ice (frozen 30-130 cm) in three sampled sites of western Siberia. The northern taiga (Khanymey, 2 cores), forest tundra (Nadym, 2 cores) and southern tundra (Tazovsky, 1 core) correspond to sporadic, discontinuous and continuous permafrost zones, respectively.

100

Fig. S1, continued.

Tazovsky Khanymey thawed frozen

<3kDa 3kDa-0.45</p>

Nadym frozen

Tazovsky Khanymey Nadym thawed frozen frozen

Ba

Tazovsky frozen

Tazovsky frozen

0

80

60

40

20

0

Khanymey thawed

Khanymey thawed

Nadym thawed

Nadym thawed

<3kDa 3kDa-0.45</p>

Fig. S1, continued.

3

Fig. S2. Profile characteristics and optical properties of the colloidal ($0.45\mu m$) and LMW (<3kDa) fraction DOC, Fe, Al, P and Si in peat core on northern taiga (A, B, C, D, E), forest tundra (F, G, H, I, J) and southern tundra (K, L, M, N, O).

Fig. S3. Mean values (\pm S.D.) of molar ratios of OC:Fe, OC:Al, Fe:Al in colloids (3 kDa - 0.45 µm) in peat porewater (thawed, 0-30 cm) and ice (frozen, 30-130 cm), averaged across three sampled sites (5 peat cores) in western Siberia Lowland.

Fig. S4. Vertical distribution of molar OC:Fe and OC:Al ratio in colloidal (3 kDa-0.45 μ m) fraction of porewater (0-30 cm) and ice (30-130 cm) in peat cores collected in Northern taiga (**A**), Forest tundra (**B**) and Southern tundra (**C**). The transition layer is the one that thaws between the date of sampling (middle of August) and the end of the active season. The northern taiga (Khanymey), forest tundra (Nadym) and southern tundra (Tazovsly) correspond to sporadic, discontinuous and continuous permafrost zones, respectively.

Fig. S5. Depth-integrated, volumetric (per m^3 of peat) pools of colloidal (3 kDa - 0.45 µm, black squares) and LMW (<3 kDa, open circles) fractions of DOC, Fe, Al, Si, P, K, Ca, Mn, Zn, Co, La and Pb in peat porewater of the active layer (thawed 0-30 cm) and the permafrost ice (frozen 30-130 cm) in various permafrost zones of western Siberia. The northern taiga (Khanymey, 2 cores), forest tundra (Nadym, 2 cores) and southern tundra (Tazovsky, 1 core) correspond to sporadic, discontinuous and continuous permafrost zones, respectively.

Table S1. Mean values (\pm s.d.) of LMW_{< 3kDa} and colloidal (3 kDa - 0.45 µm) form of solutes in peat porewater (thawed, 0-30 cm, 4 to 5 horizons) and ice (30-130 cm, 8 to 10 horizons) in three sampled sites of western Siberia Lowland. The data are averaged across two (Khanymey, Nadym) and one (Tazovsky) cores and different horizons (typically 5-6 thawed layers and 8-10 frozen layers). The DOC, Cl, SO₄²⁻, Si, Ca, Mg, Na, K, P, Al and Fe concentrations are in mg L⁻¹ with all other elements in µg L⁻¹.

		Kha	nymey,			Nad	lym,		Tazovsky,				
		Northern	taiga, 2 cores			Forest tune	dra, 2 cores			Southern tur	ndra, 1 core		
	3kDa-().45 μm	<3 k	Da	3kDa-0	.45 μm	<3k	Da	3kDa-0).45 μm	<3kI	Da	
Elements	thawed	frozen	thawed	frozen	thawed	frozen	thawed	frozen	thawed	frozen	thawed	frozen	
DOC	58±12	223±108	22±11	343±182	58±27	78 ± 40	36±15	91±49	45±2	192±191	24±5	657±454	
Cl	0.88 ± 0.74	0.7±1.42	1.59 ± 1.76	1.42 ± 0.72	0.22±0.45	0.08 ± 0.17	0.96 ± 0.88	0.56 ± 0.43	$0.09{\pm}0.07$	$0.14{\pm}0.24$	0.93±0.36	0.51±0.19	
SO4 ²⁻	0.21±0.19	2.61±3.48	1.45 ± 0.9	4.88 ± 7.02	0.21±0.18	0.26 ± 0.35	0.79 ± 0.68	0.27 ± 0.2	0.27 ± 0.18	0.5 ± 0.21	1.21 ± 0.37	13±11	
Li	0.05 ± 0.04	0.15±0.11	0.36 ± 0.05	3.34 ± 2.59	$0.04{\pm}0.05$	0.11 ± 0.06	0.45±0.12	0.96 ± 0.41	$0.1{\pm}0.07$	0.22 ± 0.27	0.66 ± 0.17	6.21±4.05	
Be	0.01 ± 0.004	$0.01{\pm}0.01$	0.01 ± 0.002	$0.03{\pm}0.01$	0.01±0.004	$0.02{\pm}0.01$	$0.02{\pm}0.01$	0.01 ± 0.01	$0.03{\pm}0.01$	$0.02{\pm}0.01$	$0.02{\pm}0.01$	0.07 ± 0.03	
Na	0.45 ± 0.71	0.16±0.12	2.04 ± 2.43	2.95 ± 1.71	0.28±0.36	0.1 ± 0.08	$1.49{\pm}0.87$	$1.19{\pm}0.84$	0.17 ± 0.15	$0.03{\pm}0.03$	0.98 ± 0.25	1.51±0.5	
Mg	0.11 ± 0.09	$0.14{\pm}0.04$	$0.1{\pm}0.02$	1 ± 0.55	0.06 ± 0.04	0.21±0.3	0.2±0.04	1.2 ± 1.47	0.13 ± 0.04	0.23 ± 0.2	$0.22{\pm}0.1$	4.27±2.68	
Al	$0.2{\pm}0.08$	0.35±0.22	0.04 ± 0.03	1.07 ± 0.69	0.19±0.07	0.35 ± 0.28	0.13±0.08	$0.1{\pm}0.1$	0.41 ± 0.11	$0.22{\pm}0.1$	$0.19{\pm}0.08$	0.82 ± 0.49	
Si	0.3 ± 0.33	0.59 ± 0.37	0.86 ± 0.15	$2.94{\pm}1.35$	0.42±0.2	0.43 ± 0.37	3.15±1.9	3.18 ± 1.87	0.33±0.13	0.3 ± 0.21	1.91 ± 0.71	3±1.43	
Р	0.09 ± 0.05	0.33±0.17	0.12 ± 0.04	1.34 ± 1.16	0.13±0.04	0.16 ± 0.08	0.24±0.17	0.07 ± 0.08	0.14 ± 0.04	0.31 ± 0.35	$0.14{\pm}0.05$	1.22±0.9	
Κ	0.21±0.26	0.13±0.06	0.53 ± 0.41	1.45 ± 0.75	0.19±0.18	0.1 ± 0.06	0.87±0.41	0.55 ± 0.3	0.16±0.12	0.05 ± 0.03	0.51 ± 0.18	1.25 ± 0.54	
Ca	$0.54{\pm}0.2$	0.59±0.23	0.41 ± 0.1	2.86 ± 1.31	0.47±0.15	1.14±1.16	1.32 ± 0.61	5.03 ± 5.73	0.83 ± 0.03	4.05 ± 5.23	1.03 ± 0.38	30±15	
Ti	3.47 ± 2.25	6.38±7.79	0.2 ± 0.05	1.41 ± 1.33	3.5±1.55	6.01±6.13	0.43±0.24	0.42 ± 0.3	5.4±2.4	3.19 ± 3.55	0.5 ± 0.21	2.89±4.02	
V	0.49 ± 0.38	0.55 ± 0.57	0.25 ± 0.09	1.64 ± 1.03	0.63±0.29	1.17 ± 1	0.86±0.61	2.31 ± 1.72	0.98 ± 0.22	1.09 ± 0.57	0.87 ± 0.45	5.05±3.02	
Cr	0.36 ± 0.26	0.52 ± 0.57	0.42 ± 0.42	0.69 ± 0.67	0.43±0.15	0.62 ± 0.53	0.36±0.13	0.28 ± 0.3	0.48 ± 0.28	0.26 ± 0.33	$0.34{\pm}0.2$	1.01 ± 1.16	
Mn	1.87 ± 2.95	2.18±0.84	$0.9{\pm}0.75$	14 ± 8.94	3.68±0.95	22 ± 28	13±8.11	115±146	5.59 ± 4.92	17±18	7.29 ± 4.25	369±249	
Fe	$0.2{\pm}0.05$	$0.34{\pm}0.10$	0.04 ± 0.02	1.59 ± 0.98	0.57±0.11	0.61 ± 0.47	0.88 ± 0.58	0.56 ± 0.81	0.34 ± 0.07	$0.4{\pm}0.25$	0.08 ± 0.03	2±1.61	
Co	0.08 ± 0.02	0.15±0.04	0.09 ± 0.03	0.98 ± 0.45	0.32±0.07	0.38 ± 0.22	1.23±0.39	0.78 ± 0.38	0.31 ± 0.05	0.64 ± 0.33	0.45 ± 0.05	6.06±3.59	
Ni	0.17 ± 0.16	0.14±0.12	0.66 ± 0.47	$4.04{\pm}1.78$	0.47±0.26	1.06 ± 0.88	2.12±0.75	2.45 ± 1.06	0.29 ± 0.26	0.91 ± 0.52	1.81 ± 0.66	12±5.82	
Zn	136±185	87±44	82±70	554±272	110±113	36±21	190±216	71±40	50 ± 20	58±44	54±17	717±365	
Ga	0.07 ± 0.05	0.07 ± 0.08	0.01 ± 0.005	$0.14{\pm}0.1$	0.03±0.02	0.06 ± 0.06	0.02 ± 0.005	0.01 ± 0.01	0.09 ± 0.05	0.05 ± 0.07	0.01 ± 0.01	0.1±0.09	
Ge	0.002 ± 0.001	0.003 ± 0.003	0.005 ± 0.003	0.01 ± 0.01	0.003 ± 0.004	0.01 ± 0.004	0.01±0.003	$0.02{\pm}0.01$	0.01 ± 0.01	0.01 ± 0.004	0.01 ± 0.001	0.01 ± 0.01	
As	0.25 ± 0.19	$0.24{\pm}0.46$	0.7 ± 0.39	2.07 ± 1.25	0.22±0.04	0.6 ± 0.39	1.42 ± 1.02	9.7 ± 2.95	0.16 ± 0.04	$0.19{\pm}0.07$	0.56 ± 0.26	6.65±3.8	
Rb	0.26 ± 0.22	0.56±0.21	0.52 ± 0.18	6.15 ± 3.52	0.41±0.23	0.43 ± 0.26	2.31±0.77	2.34 ± 1.04	0.33 ± 0.2	0.29 ± 0.19	0.76 ± 0.18	12±6.99	
Sr	4.93 ± 2.87	5.24±1.92	3.22 ± 0.59	26±12	4.06±1.62	7.46 ± 6.1	11±6.75	32 ± 33	6.07 ± 0.58	13 ± 8.35	7.4±2.14	15±89	
Y	0.11 ± 0.1	0.07 ± 0.06	0.01 ± 0.01	0.05 ± 0.02	0.17±0.1	0.41 ± 0.45	0.11±0.13	0.36 ± 0.59	1.08 ± 0.07	0.3 ± 0.14	$0.39{\pm}0.18$	0.77 ± 0.6	
Zr	0.23 ± 0.19	0.37±0.39	0.01 ± 0.004	0.17 ± 0.13	0.3±0.12	0.68 ± 0.77	0.08 ± 0.07	0.14 ± 0.21	0.46 ± 0.13	0.8 ± 0.57	0.08 ± 0.07	0.78 ± 0.78	
Nb	$0.02{\pm}0.01$	0.03 ± 0.04	0.001 ± 0.001	0.01 ± 0.02	0.02 ± 0.01	0.03 ± 0.04	0.003 ± 0.002	0.01 ± 0.01	$0.02{\pm}0.01$	0.03 ± 0.02	0.004 ± 0.002	0.04 ± 0.05	
Mo	$0.04{\pm}0.01$	$0.02{\pm}0.02$	0.02 ± 0.01	$0.02{\pm}0.01$	0.03±0.01	0.05 ± 0.03	0.03 ± 0.01	0.08 ± 0.05	0.06 ± 0.02	0.07 ± 0.07	0.05 ± 0.01	0.31±0.31	
Cd	$0.02{\pm}0.01$	$0.03{\pm}0.01$	0.02 ± 0.01	0.11 ± 0.04	0.01±0.01	0.01 ± 0.01	0.04±0.01	$0.01 {\pm} 0.01$	$0.02{\pm}0.01$	0.03 ± 0.02	$0.02{\pm}0.01$	0.2 ± 0.11	
Sn	$0.4{\pm}0.47$	0.03 ± 0.04	0.14 ± 0.14	$0.04{\pm}0.04$	0.02 ± 0.03	0.01 ± 0.01	0.01 ± 0.003	$0.01 {\pm} 0.01$	0.01 ± 0.01	$0.04{\pm}0.03$	0.02 ± 0.02	$0.02{\pm}0.01$	
Sb	0.03 ± 0.03	0.01 ± 0.01	0.05 ± 0.02	0.06 ± 0.02	0.01±0.01	$0.01 {\pm} 0.01$	$0.04{\pm}0.01$	0.06 ± 0.03	$0.02{\pm}0.01$	$0.02{\pm}0.03$	0.08 ± 0.02	0.12 ± 0.08	

Cs	0.01 ± 0.01	$0.03{\pm}0.03$	$0.01 {\pm} 0.01$	$0.39{\pm}0.33$	$0.01{\pm}0.01$	$0.02{\pm}0.01$	0.05±0.03	0.03 ± 0.04	0.01 ± 0.01	$0.01 {\pm} 0.005$	0.01 ± 0.004	0.1 ± 0.06
Ba	132±174	29±20	40±25	102±33	74±86	24±15	84±43	50±31	60 ± 48	26±25	43±16	154±77
La	0.1 ± 0.06	$0.08 {\pm} 0.09$	0.01 ± 0.01	$0.04{\pm}0.03$	0.11±0.06	0.33 ± 0.34	0.05 ± 0.05	0.16 ± 0.29	$0.93{\pm}0.08$	0.21 ± 0.09	0.2±0.12	0.28±0.2
Ce	$0.16{\pm}0.08$	$0.14{\pm}0.14$	$0.02{\pm}0.01$	$0.08 {\pm} 0.06$	0.25±0.15	0.73 ± 0.83	0.13±0.14	0.47 ± 0.83	1.7 ± 0.19	0.43 ± 0.18	0.47 ± 0.26	$0.7{\pm}0.5$
Pr	$0.02{\pm}0.01$	$0.01{\pm}0.01$	$0.003{\pm}0.002$	$0.01 {\pm} 0.01$	$0.03{\pm}0.02$	$0.09{\pm}0.1$	0.02 ± 0.02	0.06 ± 0.11	$0.19{\pm}0.03$	0.05 ± 0.02	0.06 ± 0.03	0.1 ± 0.07
Nd	0.07 ± 0.04	0.05 ± 0.05	0.01 ± 0.01	$0.04{\pm}0.03$	0.11 ± 0.08	0.38 ± 0.45	0.08±0.1	0.3 ± 0.49	0.76 ± 0.13	0.23 ± 0.11	0.27 ± 0.14	0.48 ± 0.35
Sm	$0.02{\pm}0.01$	0.01 ± 0.01	0.003 ± 0.002	0.01 ± 0.01	0.06 ± 0.03	0.11 ± 0.1	$0.04{\pm}0.04$	0.08 ± 0.11	0.18 ± 0.02	0.05 ± 0.03	$0.07{\pm}0.03$	0.11 ± 0.08
Eu	0.01±0.02	$0.01{\pm}0.004$	0.004 ± 0.002	$0.01{\pm}0.004$	$0.01{\pm}0.01$	$0.02{\pm}0.02$	0.01±0.01	$0.02{\pm}0.03$	0.05 ± 0.01	$0.01{\pm}0.01$	$0.02{\pm}0.01$	0.04 ± 0.03
Gd	0.02 ± 0.02	0.01 ± 0.01	0.003 ± 0.001	0.01 ± 0.01	0.03 ± 0.02	$0.09{\pm}0.1$	0.02 ± 0.02	0.07 ± 0.11	0.21 ± 0.01	0.05 ± 0.03	$0.07{\pm}0.04$	0.12±0.09
Tb	0.003 ± 0.003	0.002 ± 0.002	0.0003 ± 0.0002	$0.001 {\pm} 0.001$	0.01±0.003	0.01 ± 0.01	0.002 ± 0.003	0.01 ± 0.02	0.03 ± 0.001	0.01 ± 0.003	0.01 ± 0.01	0.02 ± 0.01
Dy	0.02 ± 0.02	0.01 ± 0.01	$0.002{\pm}0.001$	0.01 ± 0.01	0.03 ± 0.02	0.08 ± 0.08	0.02 ± 0.02	0.06 ± 0.09	0.18 ± 0.01	0.05 ± 0.02	0.06 ± 0.02	0.1 ± 0.08
Но	0.004 ± 0.005	$0.003 {\pm} 0.002$	0.0004 ± 0.0002	$0.002{\pm}0.001$	0.01±0.004	0.02 ± 0.02	0.003 ± 0.004	0.01 ± 0.02	0.03 ± 0.003	0.01 ± 0.004	0.01 ± 0.01	0.02 ± 0.02
Er	0.01 ± 0.01	0.01 ± 0.01	0.002 ± 0.001	0.005 ± 0.003	$0.02{\pm}0.01$	0.04 ± 0.05	0.01±0.01	$0.04{\pm}0.06$	0.09 ± 0.01	0.03 ± 0.02	$0.04{\pm}0.02$	0.08 ± 0.06
Tm	0.001 ± 0.001	$0.002{\pm}0.001$	0.0003 ± 0.0002	$0.001 {\pm} 0.001$	0.003±0.002	0.01 ± 0.01	0.002 ± 0.002	0.01 ± 0.01	0.01 ± 0.002	$0.005 {\pm} 0.003$	0.01 ± 0.002	0.01 ± 0.01
Yb	$0.01{\pm}0.01$	0.01 ± 0.01	0.001 ± 0.0004	0.01 ± 0.003	$0.02{\pm}0.01$	0.05 ± 0.05	0.01±0.02	$0.04{\pm}0.07$	0.06 ± 0.01	0.03 ± 0.02	$0.03{\pm}0.01$	0.09 ± 0.07
Lu	0.001 ± 0.001	0.002 ± 0.001	0.0004 ± 0.0001	$0.001{\pm}0.0004$	0.003±0.002	0.01 ± 0.01	0.002 ± 0.003	0.01 ± 0.01	0.01 ± 0.001	0.01 ± 0.002	0.01 ± 0.002	0.01 ± 0.01
Hf	0.01 ± 0.01	0.02 ± 0.02	$0.001 {\pm} 0.0001$	0.01 ± 0.01	0.01 ± 0.004	$0.03{\pm}0.03$	0.004 ± 0.003	0.01 ± 0.01	$0.02{\pm}0.01$	$0.03{\pm}0.03$	0.003 ± 0.005	0.03 ± 0.04
W	$0.04{\pm}0.04$	$0.04{\pm}0.05$	0.02 ± 0.003	$0.02{\pm}0.01$	0.01 ± 0.01	$0.02{\pm}0.01$	0.01 ± 0.01	0.004 ± 0.004	0.06 ± 0.01	$0.04{\pm}0.02$	$0.02{\pm}0.01$	0.03 ± 0.03
Tl	0.004 ± 0.003	0.003 ± 0.002	0.004 ± 0.002	$0.03{\pm}0.02$	0.003 ± 0.001	$0.003 {\pm} 0.002$	0.02 ± 0.01	0.01 ± 0.004	0.003 ± 0.001	0.002 ± 0.002	0.005 ± 0.0002	0.02 ± 0.01
Pb	0.47 ± 0.34	0.30 ± 0.23	0.07 ± 0.023	0.38 ± 0.18	0.28±0.26	$0.10{\pm}0.09$	0.13±0.03	0.12 ± 0.04	0.35 ± 0.28	0.17 ± 0.13	0.12 ± 0.09	0.55±0.33
Th	0.03 ± 0.01	0.06 ± 0.09	0.002 ± 0.0004	0.01 ± 0.01	$0.04{\pm}0.02$	0.06 ± 0.07	0.01±0.002	0.01 ± 0.01	0.28 ± 0.07	$0.04{\pm}0.03$	0.05 ± 0.05	0.02 ± 0.01
U	0.01±0.004	0.02 ± 0.02	0.001 ± 0.001	0.01 ± 0.01	0.01±0.005	0.02 ± 0.02	0.001 ± 0.001	0.002 ± 0.004	0.07 ± 0.04	0.07 ± 0.07	$0.03{\pm}0.03$	0.09 ± 0.12

Table S2. Mann-Whitney U test of the difference in elemental concentrations between colloidal and LMW fractions in peat porewater of the thawed layer and the permafrost (frozen) ice treated for all five peat cores. Only statistically significant values are presented (at p < 0.05).

	3kDa-0.45 µm thawed		<3	kDa thav	ved	3kl	Da-0.45 µ	m thawed	3kDa-0.45 µm frozen				
		vs			VS			vs		VS			
	3kDa	a-0.45 µı	n frozen	<	3kDa froz	zen		<3kDa t	hawed	<	∹3kDa fr	ozen	
Elements	U	Ζ	p-value	U	Ζ	p-value	U	Ζ	p-value	U	Ζ	p-value	
DOC	63	-3.32	< 0.01	5	-4.89	< 0.01	13	-3.38	< 0.01	319	2.27	0.02	
Cl	-	-	-	-	-	-	31	2.34	0.02	117	4.69	< 0.01	
SO4 ²⁻	-	-	-	-	-	-	10	3.55	< 0.01	236	2.84	< 0.01	
Li	103	-2.23	0.03	20	-4.48	< 0.01	0	4.13	< 0.01	12	6.59	< 0.01	
Be	-	-	-	77	-2.94	< 0.01	-	-	-	222	3.63	< 0.01	
Na	109	2.07	0.04	-	-	-	15	3.26	< 0.01	0	6.76	< 0.01	
Mg	88	-2.64	< 0.01	22	-4.43	< 0.01	27	2.57	0.01	70	5.77	< 0.01	
Al	-	-	-	82	-2.80	< 0.01	26	-2.63	< 0.01	-	-	-	
Si	-	-	-	100	-2.32	0.02	2	4.01	< 0.01	3	6.72	< 0.01	
Р	91	-2.56	0.01	110	-2.04	0.04	-	-	-	338	2.00	0.05	
Κ	-	-	-	111	-2.02	0.04	14	3.32	< 0.01	0	6.76	< 0.01	
Ca	102	-2.26	0.02	30	-4.21	< 0.01	-	-	-	137	4.83	< 0.01	
Ti	-	-	-	87	-2.67	< 0.01	0	-4.13	< 0.01	198	-3.97	< 0.01	
V	-	-	-	34	-4.10	< 0.01	-	-	-	173	4.32	< 0.01	
Mn	100	-2.32	0.02	49	-3.70	< 0.01	-	-	-	167	4.41	< 0.01	
Fe	-	-	-	92	-2.53	0.01	-	-	-	294	2.62	< 0.01	
Co	-	-	-	88	-2.64	< 0.01	-	-	-	105	5.28	< 0.01	
Ni	-	-	-	44	-3.83	< 0.01	12	3.44	< 0.01	38	6.22	< 0.01	
Zn	-	-	-	78	-2.91	< 0.01	-	-	-	131	4.91	< 0.01	
Ga	-	-	-	76	-2.96	< 0.01	7	-3.72	< 0.01	-	-	-	
Ge	-	-	-	-	-	-	35	2.11	0.04	242	3.35	< 0.01	
As	-	-	-	25	-4.35	< 0.01	2	4.01	< 0.01	12	6.59	< 0.01	
Rb	-	-	-	37	-4.02	< 0.01	11	3.49	< 0.01	0	6.76	< 0.01	
Sr	106	-2.15	0.03	30	-4.21	< 0.01	-	-	-	94	5.43	< 0.01	
Zr	-	-	-	86	-2.69	< 0.01	7	-3.72	< 0.01	299	-2.55	0.01	
Nb	-	-	-	81	-2.83	< 0.01	0	-4.13	< 0.01	300	-2.53	0.01	
Mo	-	-	-	89	-2.61	< 0.01	-	-	-	325	2.18	0.03	
Cd	-	-	-	106	-2.15	0.03	-	-	-	223	3.62	< 0.01	
Sb	-	-	-	-	-	-	13	3.38	< 0.01	30	6.34	< 0.01	
Cs	-	-	-	78	-2.91	< 0.01	-	-	-	163	4.46	< 0.01	
Ba	67	3.21	< 0.01	101	-2.29	0.02	-	-	-	93	5.45	< 0.01	
La	-	-	-	-	-	-	31	-2.34	0.02	-	-	-	
Ce	-	-	-	-	-	-	-	-	-	-	-	-	
Dy	-	-	-	-	-	-	32	-2.28	0.02	-	-	-	
Hf	-	-	-	84	-2.75	< 0.01	13	-3.38	< 0.01	-	-	-	
W	-	-	-	-	-	-	-	-	-	296	-2.59	< 0.01	
Tl	-	-	-	75	-2.99	< 0.01	16	3.20	< 0.01	10	6.62	< 0.01	
Pb	108	2.10	0.04	59	-3.43	< 0.01	12	-3.44	< 0.01	291	2.66	< 0.01	
Th	-	-	-	-	-	-	11	-3.49	< 0.01	150	-4.65	< 0.01	
U	-	-	-	112	-1.99	0.05	22	-2.86	< 0.01	330	-2.11	0.03	

Table S3. Optical properties (mean \pm SD) in peat porewater of the thawed layer (0-30 cm) and the permafrost ice (frozen 30-130 cm) in three sampled sites (five cores) of western Siberia for the total dissolved (< 0.45 μ m) and low molecular weight (< 3kDa) fractions.

		Khan	ymey,			Nad	ym,		Tazovsky,				
	Ne	orthern ta	iga, 2 core	S	F	orest tunc	lra, 2 cor	es	So	Southern tundra, 1 core			
	<0.45	μm	<3k	<3kDa		<0.45 μm		<3kDa		<0.45 μm		Da	
Optical properties	thawed	thawed frozen		frozen	thawed	frozen	thawed	frozen	thawed	frozen	thawed	frozen	
SUVA254, L mg C ⁻¹ m ⁻¹	3.7 ± 0.6	0.9±0.7	3.5 ± 0.2	1 ± 0.9	$2.4{\pm}0.6$	1.3 ± 0.9	2.7 ± 0.3	1.5 ± 1	$4{\pm}0.5$	1±0.9	3.8 ± 0.7	0.8 ± 0.8	
SUVA ₄₁₂ , L mg C ⁻¹ m ⁻¹	0.5 ± 0.1	0.1±0.1	0.3 ± 0.04	$0.1{\pm}0.1$	$0.3{\pm}0.1$	$0.1{\pm}0.1$	$0.3{\pm}0.1$	$0.1{\pm}0.1$	$0.6{\pm}0.1$	$0.1{\pm}0.1$	$0.4{\pm}0.1$	0.1±0.1	
E280/350	2.5 ± 0.1	3.6±0.6	$3.4{\pm}0.5$	5.1 ± 0.6	2.6±0.1	3.3 ± 0.7	$2.9{\pm}0.2$	4.1 ± 1.4	$2.4{\pm}0.1$	3.5±0.5	2.8 ± 0.1	4.1±0.4	
E254/365	3.8 ± 0.1	5.7±1	5.1 ± 0.1	8.6 ± 1.8	4.1±0.3	5.4 ± 1.5	4.6 ± 0.5	7.3±3.4	$3.7{\pm}0.2$	6±0.9	4.7 ± 0.3	7.4±1.2	
Aromaticity	126±35	179±57	38 ± 18	100 ± 27	88±19	81±40	44±13	83±17	117±15	174±66	43±13	127±61	
Humification proxy	6.9 ± 0.5	12±3.2	11±1.2	24 ± 9.8	6.9±1	11 ± 6.8	$8.4{\pm}1.9$	19±22	6.1±0.4	11±2.3	9.2±0.7	16±3.2	
Molar absorptivity (MA)	364 ± 60	96±74	333±29	107 ± 89	225±56	123±82	254±25	139±97	384±47	90±90	352±64	71±80	
Normalised Molecular weight	$1942{\pm}240$	874±296	$1819{\pm}116$	$917{\pm}356$	1388±225	$981{\pm}326$	1502 ± 99	1044 ± 385	$2023{\pm}188$	851±358	$1895{\pm}254$	772±320	
$S_{290-350}$, x10 ⁻³ , m ⁻¹	20 ± 6.7	40±13	5.8 ± 3.6	24±7.7	13±2.7	12±6.6	6.4 ± 2.4	5.9±3	17±2	30±13	6.1±2.1	23±12	
S ₂₇₅₋₂₉₅ , x10 ⁻³ , m ⁻¹	23±6	19±8.6	6.9±3	12 ± 2.4	16±4.1	21±7.9	8.3±4	13±4	23 ± 2.7	50±21	8.5±3	40±20	
S ₃₅₀₋₄₀₀ , x10 ⁻³ , m ⁻¹	11±3.4	12±4.9	2.6 ± 1.6	5.5 ± 1.8	6.3±1.3	5.4 ± 3.2	2.6±1	2.3±1.3	9.1±1.3	11±4	3.1±1.2	7.3±3.4	
SR	2.2 ± 0.2	1.8 ± 0.6	2.8±0.5	2.5±1	2.6±0.1	$5.0{\pm}2.1$	$3.1{\pm}0.6$	7.4±3.2	2.5±0.2	4.6 ± 0.9	2.8 ± 0.2	5.6±1.1	

	3kDa-0.45 µm										
	t	hawed	I	. 	frozen						
Elemen	DO		Б.	DO		Б.					
ts	С	AI	Fe	С	Al	re					
DOC	-	-	-	-	-	-					
			-								
Cl	-	-	0.6	-	-	-					
			2								
ao 1						-					
SO ₄ ²⁻	-	-	-	-	-	0.5					
		0.6			0.4	2					
Li	-	0.0	-	-	0.4	-					
		07			0.6	0.6					
Be	-	1	-	-	0.0	6					
		-			0.4	Ũ					
Na	-	-	-	-	9	-					
Ma		0.6		0.57							
Mg	-	8	-	0.37	-	-					
Δ1	_	_	_	_	_	0.6					
711		-	_		_	5					
Si	-	0.6	-	0.46	0.8	0.5					
		4			5	5					
Р	-	0.6	-	0.66	0.5	0.4					
		I			3	6					
Κ	-	-	-	-	0.0 6	-					
		0.8			0	03					
Ca	-	8	-	-	-	6					
		0.9			0.9	0.5					
T1	-	0	-	-	1	7					
V		0.8			0.7	0.5					
v	-	4	-	-	1	4					
Cr	_	0.6	_	_	0.8	0.6					
CI		3			4	1					
Mn	-	-	-	-	-	0.4					
					0.0	0					
Fe	-	-	-	-	0.6	-					
			07		3	0.5					
Co	-	-	0.7 8	-	-	0.5					
			0		03	06					
Ni	-	-	-	-	7	5					
Zn	-	-	-	-	_	-					
C		0.6		0.20	0.8	0.5					
Ga	-	9	-	0.39	9	8					
Ge		0.6			0.3	0.5					
UC	-	0	-	-	9	7					
As	-	-	-	-	-	-					
Rb	-	-	-	-	0.7	0.5					
					5	9					
Sr	-	U.8 7	-	-	-	0.3					
		/			0.5	8 0.6					
Y	-	0.9 A	-	-	6	0.0 7					
		0.8			0.7	06					
Zr	-	2	-	-	2	5					
NII.		0.8			0.9	0.5					
IND	-	3	-	-	0	9					

Table S4. Correlation matrix of DOC, Al and Fe in the colloidal fraction, based on full dataset for threestudy sites (5 cores) of western Siberia (at p<0.05). Bold are marked $R^2 > 0.7$.

Мо	-	0.8 8	-	-	0.3 9	0.5 6
Cd	-	-	-	0.63	-	0.3 8
Sn	-	-	-	-	-	-
Sb	_	-	-	-	0.5	-
		0.6			0	0.4
Cs	-	2	-	-	1	2
Da					0.6	0.6
Da	-	-	-	-	0	2
La	-	0.9	-	-	0.6	0.6
		5			06	0 0.6
Ce	-	7	-	-	4	6
Dr		0.9	_	_	0.5	0.7
11		5	-	_	9	0
Nd	-	0.9	-	-	0.5	0.6
		0.8			04	06
Sm	-	2	-	-	7	5
Fu	_	0.9	_	_	0.6	0.7
Lu		3		_	0	2
Gd	-	0.9	-	-	0.6	0.7
		0.9			0.5	4 0.6
Tb	-	0	-	-	3	2
Dv		0.9	_	_	0.5	0.6
Dy		2		_	4	7
Но	-	0.8 1	-	-	0.5	0.6
_					0.5	0.6
Er	-	6	-	-	7	8
Tm	_	0.9	_	_	0.6	0.6
1 111		3			4	1
Yb	-	0.9	-	-	0.5	0.7
-		0.8			0.5	0.6
Lu	-	5	-	-	9	7
Hf	_	0.8	_	_	0.7	0.6
111		5			7	8
W	-	0.7 6	-	-	-	-
T1	_	-	_		0.3	
11	_	-	-	_	6	-
Pb	-	-	-	-	-	-
Th	-	U./ 1	-	-	0.ð 4	0.0 7
TT		0.9			0.4	0.4
U	-	4	-	-	7	8

Table S5. Areal (land surface - normalized) pools of elements in peat porewater of the active layer (thawed 0-30 cm) and the permafrost ice (frozen 30-130 cm) in three study sites (5 peat cores) of western Siberia.

Khanymey, Northern taiga					, ga	F	Nad orest	ym, tundi	a	Tazovsky, Southern tundra			
	3kDa- 0.45 µm		<3kDa		3kDa- 0.45 um		<3kDa		3kDa- 0.45 um		<3kDa		
		awed	ozen	awed	ozen	awed	ozen	awed	ozen	awed	ozen	awed	ozen
Elemen	ts	th	Ţ	th:	Ę	th	Ţ	th:	£	th	Ţ	th:	£
С	g m ⁻²	14	208	5.3	301	25	82	15	100	8.3	200	4.7	732
Cl	g m ⁻²	0.2	0.5	0.4	0.8	0.1	0.09	0.3	0.6	0.01	0.2	0.2	0.6
SO4 ²⁻	g m-2	0.06	2	0.4	2.3	0.08	0.3	0.3	0.3	0.05	0.6	0.2	15

Li	mg m ²	0.01	0.1	0.09	2.7	0.02	0.1	0.2	1	0.01	0.3	0.1	7.2
Be	$\mu g m^2$	1.6	9.7	1.2	30	3.8	17	7.7	14	4.5	23	4.6	77
Na	g m ⁻²	0.1	0.2	0.5	2.5	0.1	0.1	0.6	1.2	0.03	0.04	0.2	1.8
Mg	g m ⁻²	0.03	0.1	0.03	0.9	0.02	0.2	0.08	1.4	0.02	0.2	0.05	4.9
AÎ	g m ⁻²	0.05	0.3	0.01	1	0.08	0.4	0.06	0.09	0.08	0.3	0.04	0.9
Si	g m ⁻²	0.06	0.5	0.2	2.6	0.2	0.4	1.4	3.2	0.07	0.3	0.4	3.5
Р	g m ⁻²	0.02	0.3	0.03	1.3	0.05	0.2	0.1	0.07	0.02	0.3	0.03	1.4
ĸ	σm ⁻²	0.05	0.1	0.1	1.2	0.07	0.1	0.4	0.6	0.03	0.06	0.1	15
Ca	σm ⁻²	0.05	0.6	0.1	2.6	0.2	1.2	0.6	5.8	0.02	4	0.2	35
Ti	mg m ⁻²	0.8	48	0.05	1.2	14	61	0.2	0.4	11	35	0.1	33
V	mg m ⁻²	0.0	0.4	0.06	1.2	0.3	1.2	0.4	2.4	0.2	13	0.2	5.8
Ċr	mg m ⁻²	0.08	0.4	0.1	0.6	0.2	0.6	0.1	0.3	0.09	0.3	0.07	1.1
Mn	mg m ⁻²	0.4	2	0.2	12	1.5	23	5.8	133	0.9	18	13	418
Fe	σ m ⁻²	0.05	03	0.01	14	0.2	0.6	0.4	0.5	0.07	0.5	0.02	23
Co	mg m ⁻²	0.02	0.1	0.01	0.9	0.1	$0.0 \\ 0.4$	0.5	0.8	0.06	0.7	0.02	6.9
Ni	mg m ⁻²	0.02	0.1	0.02	3.8	0.1	11	0.9	2.6	0.05	1	0.05	13
Zn	σm^{-2}	0.03	0.1	0.02	0.5	0.05	0.04	0.09	0.07	0.05	0.07	0.01	0.9
Ga	$\mu \sigma m^{-2}$	17	50	24	121	14	61	6.8	13	17	57	29	113
Ge	$\mu g m^{-2}$	04	3	1 1	8 5	12	5 5	2 4	16	1	64	17	13
Δc	$\mu g m$ ma m ⁻²	0.4	0.2	0.2	1.8	0.00	0.7	0.6	11	0 03	0.7	0.1	78
Rh	$mg m^{-2}$	0.05	0.2	0.2	5.2	0.09	0.7	0.0	24^{11}	0.05	0.2	0.1	133
Sr.	$mg m^2$	1 2	5.1	0.1	23	1.7	7.8	10.9	2.4	1 1	14	1.5	182
V	$mg m^2$	0.03	0.05	0.0	0.05	0.07	0.4	0.05	0.4	0.2	03	0.00	0.8
$\frac{1}{7r}$	$mg m^2$	0.05	0.05	0.003	0.05	0.07	0.4	0.03	0.4	0.2	0.5	0.09	0.0
Nh	$mg m^{-2}$	1 5	$0.5 \\ 24$	0.001	0.1 8 /	6.8	22	1.2	5	17	28	0.02	0.9
Mo	$\mu g m^{-2}$	9.1	24	3.6	22	10	55	1.5	85	11	68	0.0	246
Cd	$\mu g m^{-2}$	6	21	3.0	07	5 5	0.0	11	0.1	26	25	2.0	240
Cu Sn	$\mu g m$	81	20	4.1	35	5.5 8 A	9.0	13	9.1	1.0	30	3.7	220
Sh	$\mu g m^{-2}$	61	12	11	55	5.4	11	16	63	1.2	23	15	125
	$\mu g m$	20.1	20	$\begin{array}{c} 11\\ 21\end{array}$	212	5.2	10	21	26	2.5	25	$\frac{13}{21}$	110
CS Bo	$\mu g m$	2.5	29	10	06	2.1	24	21	20 53	0.0	27	2.1	178
Da	$mg m^{-2}$	22	50	2	20	20	227	21	164	1.9	21	1.1	219
La	$\mu g m$		0.1		0.07	4/	07	0.06	0.5	0.2	0.5	0.1	0.8
Dr.	$mg m^{-2}$	1 1	12	0.005	0.07	12	0.7	0.00	62	0.5	62	14	115
11 Nd	$\mu g m^{-2}$	16	12	20.0	20	50	202	40	204	151	265	60	526
INU Sm	$\mu g m^{-2}$	10	43	2.0	30 10	25	392 111	10	294	25	205	14	122
5III Eu	$\mu g m^{-2}$	4.4	11	0.7	0.7	23	22	19	04 19	05	17	14	125
Gd	$\mu g m^{-2}$	10	4.0		9.1 8.7	1/	80	4.5	68	3.5	61	16	120
Th	$\mu g m^{-2}$	4.9	10		0.7	21	12	9.7	00	61	0.2	22	190
	$\mu g m^{-2}$	0.0	1.5	0.07	1.2	2.1	13	1.2	9 56	24	9.2 50	12	10
Dy	$\mu g m^{-2}$	4.9	0.9	0.4	1.4	14	15	1.9	12	54	0.0	12	26
H0 En	$\mu g m^{-2}$	0.9	2.1 5.0	0.09	1.5	2.0	13	1.7	12	17	9.0	2.0	20
Tm	$\mu g m^{-2}$	2.5	5.9 1 4	0.5	4.4	1.2	44 6.6	0.5	50	$\frac{1}{21}$	55	0.1	12
1 III Vh	$\mu g m^{-2}$	0.5	1.4 5 0		0.0 5.2	1.5	45	67	J.9 42	2.1	2.1		13
10	μg m -	1.9	J.0 1 2	0.5	3.3 0.6	0.3	43	0.7	43	13	33	1.1	95
	$\mu g m^2$	0.2	1.5	0.1	0.0	1.5	0.0	1.2	/.1 6.2	1.7	0.1	1.2	13
	μg m -	1.0	13	0.2	0.0	4.0	17	1.9	0.2	3.4	32	0.9	39
	$\mu g m^2$	9.4	45	3.5	18	3.1	1/	5.5	4.8	10	4/	3.8	20 24
	$\mu g m^{-2}$	0.9	2.0		2/		2.9	0.4	12	0.5	2./	0.9	24
	$mg m^{-2}$	0.1	0.5	0.02	0.3	0.1	0.1	0.05	0.1	0.06	0.2	0.03	0./
In	$\mu g m^{-2}$		45	0.4	7.2	17	03	2.7	22	57	51	13	19
U	µg m⁻²	2.3	12	0.3	1.2	3.3	21	0.5	2.3	17	65	6.6	88