Activation and Adsorption Performance of Sewage Sludge Carbon for CO₂: Unusual Enhancement Effect of HF Treatment

(Supporting Information)

Jingxiang Sun,^{1,2} Jinzhu Zhu,^{1,2} Shuanghong Tian,^{1,2} Wen Yan,^{1,2} Jinxi Feng^{1,2*} Ya Xiong^{1,2*}

- School of Environmental Science and Engineering, Sun Yat-Sen University, no.
 135, Xingang Xi Road, Guangzhou 510275, P. R. China
- 2 Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-Sen University, no. 135, Xingang Xi Road, Guangzhou 510275, P. R. China

Figure S1. CO₂ adsorption models of the expanded interlayer space-type ultra-micropores and typical functional groups (brown: carbon atom, red: oxygen atom, and grey: fluorine atom)

Figure S2. Photos showing packing density differences of five sludge

carbons (1 g)

Figure S3. N_2 adsorption-desorption isotherms of SC₁ and SC₁- HF

treatment

Figure S4. Hierarchically porous textures (SEM and HRTEM) of SC5

surface

Figure S5. F mapping of SC₅

Figure S6. Adsorption selectivity of SC_4 and SC_5 for CO_2 and N_2

(adsorption condition: 25 °C, 1 bar)

Figure S7. The temperature of sludge carbon-containing suspended slurry

before and after adding HF

Figure S8. N_2 adsorption-desorption isotherms and Pore size distribution of SCs activated by different concentration of HF (insert table: BET

specific surface area)

Figure S9. Adsorption isotherms of CO₂ on SC₄ and SC₅ at different

temperatures

(25 °C, 1 bar)			
Adsorbents	<i>S</i> вет (m ² g ⁻¹)	CO2 Adsorption Capacity (mmol g-1)	Refs.
Crab shell carbon	1196	4.4	S1
Chestnut carbon	747	2.3	S2
Rice husk carbon	2695	3.7	S3
Olive stones carbon	1215	3.1	S4
African palm shell carbon	1890	4.4	S5
Camellia Japonica carbon	3537	2.8	S 6
Fern leaves carbon	1593	4.1	S7
Arundo donax carbon	3298	2.2	S 8
Celtuce leave carbon	3404	4.4	S9
Pine nut shell	1486	5.0	S10
Mesoporous carbon	1020	2.1	S 11
AC (from Fuchen Chem. Reagent Co.)	860	1.2	*
SC ₅	2654	4.9	*

Table S1. CO₂ adsorption capacities of various carbon materials

* These data were obtained from this study.

References

- S1. Chen, T.; Deng, S.; Wang, B.; Huang, J.; Wang, Y.; Yu, G. CO₂ adsorption on Crab Shell Derived Activated Carbons: Contribution of Micropores and Nitrogen-Containing Groups. *RSC Adv.* 2015, 5 (60), 48323–48330.
- S2. Nelson, K. M.; Mahurin, S. M.; Mayes, R. T.; Williamson, B.; Teague, C. M.; Binder, A. J.; Baggetto, L.; Veith, G. M.; Dai, S. Preparation and CO₂ Adsorption Properties of Soft-Templated Mesoporous Carbons Derived from Chestnut Tannin Precursors. *Microporous Mesoporous Mater.* 2016, 222, 94–103.
- S3. Li, D.; Ma, T.; Zhang, R.; Tian, Y.; Qiao, Y. Preparation of Porous Carbons with High Low-Pressure CO₂ Uptake by KOH Activation of Rice Husk Char. *Fuel* (*Lond.*) 2015, 139, 68–70.
- S4. González, A. S.; Plaza, M. G.; Rubiera, F.; Pevida, C. Sustainable Biomass-Based Carbon Adsorbents for Post-Combustion CO₂ Capture. *Chem. Eng. J.* 2013, 230, 456–465.
- S5. Ello, A. S.; de Souza, L. K. C.; Trokourey, A.; Jaroniec, M. Development of Microporous Carbons for CO₂ Capture by KOH Activation of African Palm Shells. J. CO₂ util. 2013, 2, 35–38.
- S6. Coromina, H. M.; Walsh, D. A.; Mokaya, R. Biomass-Derived Activated Carbon with Simultaneously Enhanced CO₂ Uptake for Both Pre and Post Combustion Capture Applications. *J. Mater. Chem. A Mater. Energy Sustain.* 2016, *4* (1), 280–289.
- S7. Serafin, J.; Narkiewicz, U.; Morawski, A. W.; Wróbel, R. J.; Michalkiewicz, B. Highly Microporous Activated Carbons from Biomass for CO₂ Capture and Effective Micropores at Different Conditions. J. CO2 util. 2017, 18, 73–79.
- S8. Singh, G.; Lakhi, K. S.; Kim, I. Y.; Kim, S.; Srivastava, P.; Naidu, R.; Vinu, A. Highly Efficient Method for the Synthesis of Activated Mesoporous Biocarbons with Extremely High Surface Area for High-Pressure CO₂ Adsorption. ACS Appl. Mater. Interfaces 2017, 9 (35), 29782–29793.
- S9. Wang, R.; Wang, P.; Yan, X.; Lang, J.; Peng, C.; Xue, Q. Promising Porous Carbon Derived from Celtuce Leaves with Outstanding Supercapacitance and CO₂ Capture Performance. ACS Appl. Mater. Interfaces 2012, 4 (11), 5800–5806.
- S10. Deng, S.; Wei, H.; Chen, T.; Wang, B.; Huang, J.; Yu, G. Superior CO2 Adsorption on Pine Nut Shell-Derived Activated Carbons and the Effective Micropores at Different Temperatures. *Chem. Eng. J.* 2014, 253, 46–54.
- S11. Sevilla, M.; Fuertes, A. B. CO₂ Adsorption by Activated Templated Carbons. J. Colloid Interface Sci. 2012, 366 (1), 147–154.