# Supporting Information

Rational construction of covalent organic frameworks with multiple-site functional groups for highly efficient removal of low-concentration U(VI) from water

Tingting Yang <sup>a</sup>, Chen Tian<sup>\*b, c</sup>, Xu Yan <sup>b, c</sup>, Ruiyang Xiao <sup>b, c</sup> and Zhang Lin <sup>a, b, c</sup>

- School of Environment and Energy, Guangdong Provincial Key Laboratory of Solid Wastes Pollution Control and Recycling, South China University of Technology, Guangzhou, Guangdong 510006, China.
- School of Metallurgy and Environment, Central South University, Changsha, Hunan 410083, PR China.
- c. Chinese National Engineering Research Centre for Control and Treatment of Heavy Metal Pollution, Changsha, Hunan 410083, PR China.

## \*Corresponding author: Chen Tian

E-mail: birdytc@hotmail.com (Dr. Chen Tian)

# Content

| S1. Materials | and | Reagents |
|---------------|-----|----------|
|---------------|-----|----------|

#### S2. Characterization

S3. Adsorption models

S4.

Supplemental

Results

#### **S1. Materials and Reagents**

2,4,6-Trihydroxy benzene-1,3,5-Tricarbaldehyde (doted as Tp) (> 98%) and 2,5diaminobenzene-1,4-dicarbonitrile (doted as Dd) (> 98%) were purchased from Tengqian Biotechnology Co. Ltd, Shanghai, China. Anhydrous mesitylene (98%), hydroxylamine hydrochloride (98.5%), anhydrous dioxane ( $\geq$  98.5%), sodium hydroxide, nitric acid, and acetic acid ( $\geq$  99.7%) were purchased from Aladdin Industry Co. Ltd., Shanghai, China. Trimethylamine (about 25% in methanol, about 3.2 mol L<sup>-1</sup>) was purchased from TCL. Anhydrous methanol was purchased from Sinopharm group. And all reagents were used without further purification. The uranium stock solution was prepared by dissolving the appropriate amount of UO<sub>2</sub>(NO<sub>3</sub>)<sub>2</sub>·6H<sub>2</sub>O in deionized water. Deionized water used in all the experiments was obtained from a Milli-Q water purification system.

#### S2. Characterization

X-ray diffraction (XRD) data were collected by a D8-Advance X-ray diffractometer (Bruker, German) with a high-intensity monochromatic nickel filtered Cu K $\alpha$  ( $\lambda = 1.5406$  Å) radiation. The Fourier-transform infrared (FT-IR) spectra of the samples were recorded on an RX1 PerkinElmer FT-IR spectrometer using KBr as a diluent. The solid-state <sup>13</sup>C NMR spectra were recorded on an Agilent 600 (600 MHz) spectrometer at ambient temperature, the chemical shifts were referenced to TMS. Brunauer-Emmett-Teller (BET) specific surface area (SSA) of the samples was determined by collecting N<sub>2</sub> gas adsorption/desorption isotherms on a Micromeritics ASAP 2020 Instrument. Before the SSA determination, all samples of COFs were degassed at 120 °C for 10 h. The specific surface areas for N<sub>2</sub> were calculated under the N<sub>2</sub> pressure (0.005 <  $P/P_0$  < 0.1). The pore size distributions were calculated from the adsorption-desorption isotherms via density functional theory (DFT) and Barrett-Joyner-Halenda (BJH) model. Thermogravimetric analysis (TGA) experiments data were collected using STA 449C simultaneous thermal analyzer (NETZSCH, Germany). 10 mg samples were heated from 30 to 800 °C with a heating rate of 10 °C min<sup>-1</sup> under the nitrogen atmosphere. Scanning electron microscopy (SEM) images were collected using a Hitachi SU 1510 and SU 4800. The XPS spectra were recorded by an Axis Ultra DLD instrument (Kratos Analytical, U.K.) using an A1 Ka X-ray source, at pass energy of 160 eV for survey scans and 40 eV for higher solution scans. The residual concentration of uranium was measured by inductively coupled plasma mass spectrometry (ICP-MS, PerkinElmer, USA) and inductively coupled plasma optical emission spectrometry (ICP-OES, PerkinElmer, USA).

### **S3.** Adsorption models

To further understand the adsorption equilibrium of the absorbents, Langmuir (eq 1) and Freundlich models (eq 2) were employed to fit the isotherms on uranium adsorption by COFs after adsorption for 12 h. The adsorption isotherms fitted with the following equations:

$$\frac{C_e}{q_e} = \frac{C_e}{Q_{max}} + \frac{1}{Q_{max}K_L} \tag{1}$$

where  $Q_{max}$  and  $K_L$  are Langmuir constants, corresponding to the maximum adsorption capacity at complete monolayer coverage (mg g<sup>-1</sup>) and the Langmuir affinity coefficient (L mg<sup>-1</sup>);  $C_e$  and  $q_e$ are the equilibrium concentration of adsorbate (mg g<sup>-1</sup>) and amount adsorbed at equilibrium (mg g<sup>-1</sup>), respectively.

$$q_e = K_F \times C_e^n \tag{2}$$

where  $q_e$  is the adsorption capacity of the adsorbent (mg g<sup>-1</sup>),  $C_e$  is the equilibrium concentration (mg L<sup>-1</sup>), and  $K_F$  and *n* are the Freundlich constants characteristic of an adsorption isotherm.

To evaluate the adsorption kinetics and mechanism of the adsorbents, pseudo-first-order, pseudo-second-order were used to fit the kinetics on uranium adsorption by COFs after adsorption for 12 h. The adsorption kinetics fitted with the following equations:

$$\ln\left(q_e - q_t\right) = \ln q_e - k_1 \times t \tag{3}$$

where  $q_t$  (mg g<sup>-1</sup>) and  $q_e$  (mg g<sup>-1</sup>) are the amounts of adsorbed uranium at the contact and equilibrium times, respectively, *t* is the contact time (min), and  $k_I$  is the rate constant (min<sup>-1</sup>).

$$\frac{t}{q_t} = \frac{1}{k_2 q_e^2} + \frac{t}{q_e}$$
(4)

where  $q_t$  (mg g<sup>-1</sup>) and  $q_e$  (mg g<sup>-1</sup>) are the amounts of adsorbed uranium at the contact and equilibrium times, respectively, *t* is the contact time (min), and  $k_2$  is pseudo-second-order adsorption rate constant (g mg<sup>-1</sup> min<sup>-1</sup>).

The selectivity coefficient  $\binom{\beta_{UO^2_2}}{M^{n+1}}$  for uranium, as a specific term to describe the potency and degree of selectivity of the adsorbent,<sup>1</sup> was calculated by the following equation:

$$\beta_{UO_{2}^{2}} / M^{n+} = K_{d(UO_{2}^{2})} / K_{d(M^{n+})}$$
(5)

$$K_d = Q_e / C_e \tag{6}$$

where  $C_e$  is the equilibrium concentration (mg L<sup>-1</sup>),  $Q_e$  is the adsorption capacity of the adsorbent (mg g<sup>-1</sup>).

# **S4. Supplemental Results**



Fig. S1. The AA Stack and AB Stack Model of COF-TpDd from the top and side view and their corresponding layer spacing.

**Table. S1.** Atomistic coordinates for the unit cell for the AA-stacking mode of COF-TpDd optimized using the Forcite method (space group P-6, a = b = 21.4535 Å; c = 3.4302 Å,  $\alpha = \beta = 90^{\circ}$  and  $\gamma = 120^{\circ}$ ).

| Atom | Х       | Y        | Z |
|------|---------|----------|---|
| C1   | 0.38324 | -0.19226 | 0 |
| C2   | 0.36215 | -0.25869 | 0 |
| C3   | 0.28757 | -0.30402 | 0 |
| O4   | 0.27716 | -0.47189 | 0 |
| N5   | 0.40706 | -0.45271 | 0 |
| C6   | 0.45713 | -0.47253 | 0 |
| C7   | 0.42752 | -0.54431 | 0 |
| C8   | 0.46767 | -0.57503 | 0 |
| С9   | 0.42383 | -0.65232 | 0 |
| N10  | 0.61135 | -0.28727 | 0 |
| H11  | 0.3447  | -0.17821 | 0 |
| H12  | 0.35633 | -0.49368 | 0 |
| H13  | 0.37079 | -0.5785  | 0 |

| Materials       | Chemical Stability                                                     | References |
|-----------------|------------------------------------------------------------------------|------------|
| COF-TpDb-AO     | Saturated NaCl, HCl (3 M),<br>NaOH (3 M); T = 24 h                     | 2          |
| COF-JLU2        | HNO <sub>3</sub> (5 $\dot{M}$ ), NaOH (5 $M$ );<br>T = 24 h            | 3          |
| COF-PDAN-AO     | HCl (5 M)、 NaOH (5 M);<br>T = 6 h                                      | 4          |
| TFPT-BTAN-AO    | HCl (1 M)、 NaOH (1 M)、<br>HNO <sub>3</sub> (0.1、0.5、1、3、5 M); T = 12 h | 5          |
| TP-COF-AO       | HNO <sub>3</sub> (3 M)、 NaOH (3 M);<br>T = 24 h                        | 6          |
| SCU-COF-1       | HCl (1 M), HNO <sub>3</sub> (1 M, 3 M), NaOH (1 M);<br>T = 24 h        | 7          |
| TAPB-BMTTPA-COF | HCl (6 M)、 NaOH (6 M);<br>T = 72 h                                     | 8          |
| COF-V           | HCl (1 M)、 NaOH (2 M);<br>T = 24 h                                     | 9          |
| Redox-COF1      | HNO <sub>3</sub> (pH = 1.0-7.0);<br>T = 72 h                           | 10         |
| TpODH           | HCl (9 M)、 NaOH (9 M);<br>T = 24 h                                     | 11         |
| This Work       | HNO <sub>3</sub> (1、3、5 M)、NaOH (1、3、5 M);<br>T = 24 h                 | /          |

*Table. S2.* The comparison of the stability test conditions of COF-TpDd-AO<sub>2</sub> with other COFs reported in the literature.



Fig. S2. The nitrogen adsorption isotherm and pore size distribution of COF-TpDd (a) and COF-TpDd-AO<sub>2</sub> (b).



Fig. S3. Thermogravimetric analysis of COF-TpDd and COF-TpDd-AO2 under the nitrogen atmosphere with theheatingrateof10°Cmin<sup>-1</sup>at30-800°C.



Fig. S4. The XRD (a), FT-IR (b) and  $N_2$  adsorption/desorption curves (c) of COF-TpDb-AO.

|         |                          | Langmuir model                     |                                   |        | Freundlich model                                            |      |        |
|---------|--------------------------|------------------------------------|-----------------------------------|--------|-------------------------------------------------------------|------|--------|
| Uranium | Absorbents               | $Q_{max}$<br>(mg g <sup>-1</sup> ) | $\frac{K_L}{(L \text{ mg}^{-1})}$ | $R^2$  | $K_f$ (mg <sup>1-n</sup> ·L <sup>n</sup> ·g <sup>-1</sup> ) | п    | $R^2$  |
| Part A  | COF-TpDd                 | 0.83                               | 33.82                             | 0.7398 | 2894.42                                                     | 1.90 | 0.9929 |
|         | COF-TpDb-AO              | 0.99                               | 42.68                             | 0.9826 | 3736.37                                                     | 1.75 | 0.9972 |
|         | COF-TpDd-AO <sub>2</sub> | 1.70                               | 229.15                            | 0.9632 | 14228.61                                                    | 1.47 | 0.9993 |
| Part B  | COF-TpDd                 | 19.14                              | 4.25                              | 0.9935 | 20.01                                                       | 0.61 | 0.9811 |
|         | COF-TpDb-AO              | 18.38                              | 6.39                              | 0.9907 | 22.02                                                       | 0.57 | 0.9811 |
|         | COF-TpDd-AO <sub>2</sub> | 16.62                              | 26.04                             | 0.9902 | 24.97                                                       | 0.43 | 0.9864 |
|         | COF-TpDd                 | 40.21                              | 0.39                              | 0.7439 | 26.19                                                       | 1.48 | 0.9957 |
| Part C  | COF-TpDb-AO              | 40.29                              | 0.48                              | 0.9008 | 35.26                                                       | 1.48 | 0.9954 |
|         | COF-TpDd-AO <sub>2</sub> | 27.50                              | 0.96                              | 0.9888 | 82.91                                                       | 1.71 | 0.9926 |
| Part D  | COF-TpDd                 | 41.79                              | 1.39                              | 0.9988 | 24.45                                                       | 0.27 | 0.9969 |
|         | COF-TpDb-AO              | 48.88                              | 1.60                              | 0.9975 | 27.19                                                       | 0.31 | 0.9970 |
|         | COF-TpDd-AO <sub>2</sub> | 49.02                              | 2.16                              | 0.9984 | 31.61                                                       | 0.27 | 0.9893 |

**Table. S3.** The Langmuir model and Freundlich model for uranium absorbed onto COFs,  $C_0 = 0.2-10$  mg L<sup>-1</sup>; COFs included COF-TpDd, COF-TpDb-AO and COF-TpDd-AO<sub>2</sub>.

**Table. S4.** Kinetic parameters for pseudo-first-order model, pseudo-second-order model for uranium with the concentrations of 0.5 and 5 mg L<sup>-1</sup> adsorbed onto COFs; COFs included COF-TpDd, COF-TpDb-AO, and COF-TpDd-AO<sub>2</sub>.

| Initial                |                          | Pseudo-first-order model |               |        | Pseudo-second-order model |                       |                       |
|------------------------|--------------------------|--------------------------|---------------|--------|---------------------------|-----------------------|-----------------------|
| Concentration          | Absorbents               | $Q_e$                    | $k_1$         | $R^2$  | $Q_e$                     | $k_2$                 | <i>R</i> <sup>2</sup> |
|                        |                          | $(mg g^{-1})$            | $(\min^{-1})$ |        | $(mg g^{-1})$             | $(g mg^{-1}min^{-1})$ |                       |
|                        | COF-TpDd                 | 1.40                     | 0.0504        | 0.9387 | 2.36                      | 0.1233                | 0.9999                |
| 0.5 mg L <sup>-1</sup> | COF-TpDb-AO              | 1.15                     | 0.0578        | 0.9362 | 2.44                      | 0.1462                | 0.9999                |
|                        | COF-TpDd-AO <sub>2</sub> | 1.19                     | 0.0832        | 0.9596 | 2.79                      | 0.1473                | 0.9998                |
| 5 mg L <sup>-1</sup>   | COF-TpDd                 | 13.88                    | 0.0073        | 0.9560 | 18.08                     | 0.0013                | 0.9981                |
|                        | COF-TpDb-AO              | 16.39                    | 0.0101        | 0.9908 | 20.16                     | 0.0011                | 0.9994                |
|                        | COF-TpDd-AO <sub>2</sub> | 18.36                    | 0.0089        | 0.9818 | 22.98                     | 0.0010                | 0.9993                |

| Element           | $C_{	heta} (\mathrm{mg}  \mathrm{L}^{-1})$ | Removal efficiency (%) | Selectivity coefficient $\beta_{U0^{2}+M^{n+}}$ |
|-------------------|--------------------------------------------|------------------------|-------------------------------------------------|
| $N_{e}^{+}$       | 5                                          | 89.59                  | 53356.10                                        |
| INa               | 50                                         | 89.51                  | 69929.39                                        |
| $M \sim 2^+$      | 5                                          | 89.61                  | 903.89                                          |
| IVIg <sup>2</sup> | 50                                         | 89.59                  | 1451.05                                         |
| Dh-2+             | 5                                          | 89.58                  | 4.38                                            |
| P0 <sup>2</sup>   | 50                                         | 89.60                  | 2037.95                                         |
| $Cd^{2+}$         | 5                                          | 89.59                  | 47.86                                           |
|                   | 50                                         | 89.57                  | 234.43                                          |
| Fe <sup>3+</sup>  | 5                                          | 89.58                  | 7.32                                            |
|                   | 50                                         | 89.61                  | 0.25 🛠                                          |

**Table. S5.** The selectivity coefficient of COF-TpDd-AO<sub>2</sub> for uranium;  $C_0$  (uranium) = 5 mg L<sup>-1</sup> and  $C_0$  (coexisting metals) = 5 and 50 mg L<sup>-1</sup>.

 $\bigstar$ : The precipitation of Fe<sup>3+</sup> resulted in an abnormal affinity coefficient.



Fig. S5. The adsorption performance of COF-TpDd-AO<sub>2</sub> after five cycles to uranium.



Fig. S6. The XRD (a) and FT-IR spectra (b) of COF-TpDd-AO<sub>2</sub> before and after the first adsorption cycle.



**Fig. S7.** The SEM image and EDS mapping of COF-TpDd, COF-TpDd-AO<sub>2</sub> and after 0.5 and 5 mg L<sup>-1</sup> adsorbed by COF-TpDd-AO<sub>2</sub>.



**Fig. S8.** (a) The effect of pH on adsorption capacity of COFs for uranium; (b) Zeta potentials of COF-TpDd-AO<sub>2</sub> as a function of solution pHs. COFs included COF-TpDd, COF-TpDb-AO, and COF-TpDd-AO<sub>2</sub>.



Fig. S9. The species distribution of uranium as a function of pH.



Fig. S10. The XPS spectra of COF-TpDd-AO<sub>2</sub> before and after adsorption.



Fig. S11. The comparison of adsorption interaction of COF-TpDd-AO<sub>2</sub> and the pristine COF-TpDd with uranium.

#### Reference

- 1. X. Yin, J. Bai, W. Tian, S. Li, J. Wang, X. Wu, Y. Wang, F. Fan, Q. Huang and Z. Qin, Uranium sorption from saline lake brine by amidoximated silica, *J. Radioanal. Nucl. Chem.*, 2017, **313**, 113-121.
- 2. Q. Sun, B. Aguila, L. D. Earl, C. W. Abney, L. Wojtas, P. K. Thallapally and S. Ma, Covalent organic frameworks as a decorating platform for utilization and affinity enhancement of chelating sites for radionuclide sequestration, *Adv. Mater.*, 2018, **30**, 1705479.
- 3. X. Li, Y. Qi, G. Yue, Q. Wu, Y. Li, M. Zhang, X. Guo, X. Li, L. Ma and S. Li, Solvent- and catalyst-free synthesis of an azine-linked covalent organic framework and the induced tautomerization in the adsorption of U(VI)) and Hg(II), *Green Chem.*, 2019, **21**, 649-657.
- F.-F. Li, W.-R. Cui, W. Jiang, C.-R. Zhang, R.-P. Liang and J.-D. Qiu, Stable *sp*<sup>2</sup> carbon-conjugated covalent organic framework for detection and efficient adsorption of uranium from radioactive wastewater, *J. Hazard. Mater.*, 2020, **392**, 122333.
- 5. W.-R. Cui, C.-R. Zhang, W. Jiang, F.-F. Li, R.-P. Liang, J. Liu and J.-D. Qiu, Regenerable and stable *sp*<sup>2</sup> carbon-conjugated covalent organic frameworks for selective detection and extraction of

uranium, Nat. Commun., 2020, 11, 436.

- 6. C.-R. Zhang, W.-R. Cui, W. Jiang, F.-F. Li, Y.-D. Wu, R.-P. Liang and J.-D. Qiu, Simultaneous sensitive detection and rapid adsorption of  $UO_2^{2+}$  based on a post-modified  $sp^2$  carbon-conjugated covalent organic framework, *Environ. Sci.: Nano.*, 2020, **7**, 842-850.
- 7. L. He, S. Liu, L. Chen, X. Dai, J. Li, M. Zhang, F. Ma, C. Zhang, Z. Yang, R. Zhou, Z. Chai and S. Wang, Mechanism unravelling for ultrafast and selective <sup>99</sup>TcO<sub>4</sub><sup>-</sup> uptake by a radiation-resistant cationic covalent organic framework: a combined radiological experiment and molecular dynamics simulation study, *Chem. Sci.*, 2019, **10**, 4293-4305.
- 8. N. Huang, L. Zhai, H. Xu and D. Jiang, Stable covalent organic frameworks for exceptional mercury removal from aqueous solutions, *J. Am. Chem. Soc.*, 2017, **139**, 2428-2434.
- Q. Sun, B. Aguila, J. Perman, L. D. Earl, C. W. Abney, Y. Cheng, H. Wei, N. Nguyen, L. Wojtas and S. Ma, Postsynthetically modified covalent organic frameworks for efficient and effective mercury removal, *J. Am. Chem. Soc.*, 2017, **139**, 2786-2793.
- 10. Y. Li, X. Guo, X. Li, M. Zhang, Z. Jia, Y. Deng, Y. Tian, S. Li and L. Ma, Redox-active two-dimensional covalent organic frameworks for selective reductive separation of valence-variable, redox-sensitive and long-lived radionuclides, *Angew. Chem., Int. Ed.*, 2020, **59**, 4168-4175.
- 11. Y. Li, C. Wang, S. Ma, H. Zhang, J. Ou, Y. Wei and M. Ye, Fabrication of hydrazone-linked covalent organic frameworks using alkyl amine as building block for high adsorption capacity of metal lons, *ACS Appl. Mater. Interfaces*, 2019, **11**, 11706-11714.