Electronic supplementary information

Understanding the toxicity mechanism of CuO nanoparticles: the intracellular view of exposed earthworm cells

Authors

Navarro Pacheco Natividad Isabel^{ab}, Roubalova Radka^a, Dvorak Jiri^a, Benada Oldrich^a, Dominik Pinkas^c, Kofronova Olga^a, Semerad Jaroslav^{ad}, Pivokonsky Martin^e, Cajthaml Tomas^{ad}, Bilej Martin^a and Prochazkova Petra^{*a}

a. Institute of Microbiology of the Czech Academy of Sciences, Videnska 1083, 142 20 Prague 4, Czech Republic

c. Institute of Molecular Genetics of the Czech Academy of Sciences, Microscopy Centre, Electron Microscopy Core Facility, Videnska 1083,
142 00 Prague 4, Czech Republic

d. Institute for Environmental Studies, Faculty of Science, Charles University, Benatska 2, 128 01 Prague 2, Czech Republic

e. Institute of Hydrodynamics of the Czech Academy of Sciences, Pod Patankou 30/5, 166 12, Prague 6, Czech Republic

* Petra Prochazkova. kohler@biomed.cas.cz. Institute of Microbiology of the Czech Academy of Sciences, Videnska 1083, 142 20 Prague 4, Czech Republic

-----r----r

Corresponding author:

Petra Prochazkova

kohler@biomed.cas.cz

Institute of Microbiology of the Czech Academy of Sciences, Videnska 1083, 14200 Prague 4, Czech Republic

b. First Faculty of Medicine, Charles University, Prague, Czech Republic

A		e size		Shape			
CuO NPs	5-15 nm				Spherical/rod		
В	Z-Avg.	(nm)ª	ζ (r	nV) ^ь	UV/Vis (nm		
	2 h	24 h	2 h	24 h	2 h	24 h	
Distilled water	1050±74.9	934±343	26.1±1.92	-15.7±1.82	400-500	400-500	
R-RPMI 1640 medium	316±8.08	351±51.7	-15.9±0.675	-15.7 ±0.581	<230	<230	

Table S1. Physico-chemical characterization of CuO NPs.

A) Primary particle characterization. Average obtained by transmission electron microscope.

B) Characterization of 100 $\mu\text{g}/\text{mL}$ CuO NPs suspensions in miliQ water water and R-RPMI 1640 medium.

^aHydrodynamic size of 100 µg/mL CuO NPs suspensions determined by Dynamic Light Scattering (DLS). Mean of 3 measurements ± SD.

 ${}^{b}\zeta$ = zeta potential. Mean of 3 measurements ± SD.

Gene	e Direction Sequence		Size (bp)	GenBank No.
	For	5'-AAA AAG CTT TGC TGT GCT GAT GCT-3'		KP770991
Metallothionein	Rev	5'-CGT ATT TCA ATG CCT TGG CTC TCA-3'	154	
Dia ta da la ta	For	5'-CTG GAA GGG ACC GTG GAG ATG-3'	202	KP770990
Phytochelatin	Rev	5'-ACC CTT CGA CAC CCG TTT CAC AA-3'	202	
M. 600	For	5'-GAA GCT CAG ACC AAA GGA GAC-3'		KU057379
MIN-SOD	Rev	5'-TGA TTG ATA TGT CCT CCG CC-3'	91	
	For	5'-ATG AGT TTA GCA AGA CCA CTG-3'	103	KR106132
Cu2n-SOD	Rev	5'-GTC CAA GCC AAC CAT ATC AC-3'		
Catalana	For	5'-TAC AAA CTG GTG AAC GCC GA-3'	120	DQ286713
Catalase	Rev	5'-AAA GGT CAC GGG TCG CAT AG-3'	139	
ENAADU	For	5'-CAT CCC GAT GCG GAC AGT CTG TA-3'	244	AEB92227
EMAPII	Rev	5'-TCC CCA ATG GCA GCA CCA ATT-3'	244	
Fet/Lys	For	5'-TGG CCA GCT GCA ACT CTT-3'		U02710 D85846 D85848
	Rev	5'-CCA GCG CTG TTT CGG ATT AT-3'		D85847 DQ144453
Lunchrisin	For	5'-AGG CCA TAC TCG GAA CGC AAG AA-3'	212	KX816866
Lumbricin	Rev	5'-CAC ACG CTC CAT CGA AAT CAA CTC-3'	213	
МЕК	For	5'-CAA GGA ACG ATC CCA TTC AT-3'	147	EH672240
Kinase 1	Rev	5'-GTA TCA TGG TGC AAC CAA CG-3'	147	
DKC 1	For	5'-TTT TAT GCG GCC GAA GTC A-3'	120	DQ286716
FRC I	Rev	5'-GTC GGC GAT TTT GCA GTG A-3'	120	
RDI 17	For	5'-CAT CAC ACC CTA CAT GAG CA-3'	179	BB998250
NFL 17	Rev	5'-TAA CGG AAG AAG GGG TTA GC-3'	1/5	
RPL 13	For	5'-CAC AAT TGG AAT TGC TGT CG-3'	144	BB998075
	Rev	5'-GTG GCA TCA CCC TTG TTA GG-3'		

Table S2. Primer sequences used for RT-PCR. Mn-SOD: *manganese superoxide dismutase; CuZn-SOD:* copper-zinc superoxide dismutase; EMAP II: endothelial monocyte-activating polypeptide-II; Fet/Lys: Fetidin/Lysenin; PKC1: protein kinase C 1; RPL 17 – ribosomal protein L17; RPL 13 – ribosomal protein L13.

Fig. S1. TEM image of CuO NPs at the 100 µg/mL concentration, and boxplot of primary size particles of 100 µg/mL CuO NPs. The boxplot shows the measured values of CuO NPs and its sizes (nm), larger - max. diameter; smaller - min. diameter.

Fig. S2. Flow cytometer analyses of non-treated coelomocytes. Three cell populations were detected; hyaline amoebocytes (HA), granular amoebocytes (GA), and eleocytes (EC). A) control cells in R-RPMI 1640 cultivation medium, B) R-RPMI 1640 cultivation medium without cells.

Fig. S3. Flow cytometer analyses of coelomocytes treated with CuO NPs. Three populations were detected; hyaline amoebocytes (HA), granular amoebocytes (GA), and eleocytes (EC); A) cells exposed to 100 µg/mL of Cu in the form of CuO NPs in R-RPMI 1640 cultivation medium, B) R-RPMI 1640 cultivation medium without cells with 100 µg/mL of Cu in the form of CuO NPs.

Fig. S4. Apoptosis of amoebocytes. Apoptosis of A) hyaline and B) granular amoebocytes incubated with 100 µg/mL of Cu in the form of CuO NPs after 24 h.