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SI-1: The in-situ Q-XAS experimental settings
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SI-2: Sample characterization

The synthesized samples were identified by XRD using a Bruker D8 Advance X-
ray Diffractometer equipped with a LynxEye detector using Ni-filtered Cu Ka radiation
(A= 0.15418 nm) (Bruker AXS Gmbh, Karlsruhe, Germany). All XRD patterns were
collected at a scan speed of 2°-min’! from 10 to 70° operated at a tube voltage of 40 kV
and a tube current of 40 mA. The FTIR spectra of products, making pellets with dried
KBr (~1.25% sample weight), were measured over the 4000 - 400 cm™! wavenumber
range with a resolution of 4 cm™! against the air background (Bruker VERTEX 70). 128
scans were collected for each sample, and the spectral data were acquired, processed,
and analyzed using the OPUS program. The specific surface areas (SSA) of the samples
were measured using N, adsorption-desorption at 77 K (ASAP 2460, micromeritics)
after degassing 0.1 - 0.2 g samples at 80 °C for 3 h under vacuum. In addition, a small
amount of synthesized samples was deposited on a conductive plastic, then plated using

a sputtering apparatus and observed by scanning electron microscopy (SU8000) at an



accelerating voltage of 10 or 20 kV. Furthermore, the different As and Cr valence
proportion of some selected kinetic samples were determined using the LCF analysis
of As and Cr K-edge XAS. The spectra were collected between 11.67 and 12.46 keV
for As and between 5.796 and 6.588 keV for Cr, respectively, using a double crystal
monochromator Si(111) in fluorescence mode at the beamline 1W2B of the BSRF. All

spectra were processed using the Athena program.
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Fig. S1. The correlation analysis between the initial molar ratios of CrO4*/SO4* and

the final molar ratios of CrO42/S0,? in Cr(VI)-incorporated schwertmannite samples.
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Fig. S2. The SEM images of Cr(VI)-incorporated schwertmannite samples obtained

from Fe3* hydrolysis in the presence of different molar ratios of CrO4>/SO,* (a: CrO4*

/SO4* = 0; b: CrO4%/S04* = 0.5; c: CrO4%/S04* = 1; d: CrO4>/S04> =2).
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Fig. S3. As(lll) adsorption-oxidation isotherms on Cr(VI)-incorporated

schwertmannite samples at pH 5 and 0.05 M NaNO; fitted with the Langmuir equation.
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Fig. S4. The concentration of dissolved SO,* during the reaction of 2 g-L-! Cr(VI)-
incorporated schwertmannite samples with 0 mM or 2 mM As(III) at pH 5 and 25 °C.

The addition of As(II) solution was set as the start point of reaction (i.e., 0 h).
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Fig. S5. Kinetics of 2 mM As(III) adsorption on Cr(VI)-incorporated schwertmannite
at pH 5 and 25 °C fitted using the second-order kinetic equation (a) and the power

function (b) (solid line). The fitted results are summarized in Table S2.
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Fig. S6. The XRD patterns (a) and FTIR spectra (b) of finial solid products after the
reaction of 2 mM As(IIT) with 2 g-L-! Cr(VI)-incorporated schwertmannite at pH 5 and

25 °C.
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Fig. S7. The selected As or Cr K-edge XAS spectra of finial products (a and c) and the

obtained proportion of As(IIl) and As(V) or Cr(VI) and Cr(IIl) by the linear

combination fitting (LCF) analysis (b and d) from 2 g-L! Cr(VI)-incorporated

schwertmannite with 2 mM As(III) at pH 5 and 25 °C.



= n [=2) = |
(=] < (=] (=]
T v T v T v T

@
>
T T

2 mM As(III), pH 5, 25°C

The oxidation ratio of As(IIT) (%)

[
=
T T

—8—2Cr-Sch
i —e—2Cr-Sch+N,
1 0 1 i 1 i 1 i 1 i 1 i 1
0 2 4 6 8 10

Time (h)

Fig. S8. The oxidation ratio of As(IIl) during the reaction of 2 gL' Cr(VI)-
incorporated schwertmannite samples with 2 mM As(III) at pH 5 and 25 °C in air or N,

atmosphere.



Table S1. The fitted parameters for As(IIl) adsorption-oxidation isotherms with
Langmuir equation at pH 5 and 0.05 M NaNO;. Langmuir equation is described as Q.
= quKC¢/(1 + KC,), where Q. (mmol/g) is the amount of As adsorbed on per unit mass,
C. (mmol-L") is As equilibrium concentrations, g, (mmol/g) is As adsorption capacity,

and K (L/mg) is a Langmuir constant!.

Langmiur
Samples
(max (mmol-g!) K (L-mg") R?
Sch 1.43 4.09 0.9681
0.5Cr-Sch 1.18 101.15 0.8890
1Cr-Sch 1.53 11.95 0.8210

2Cr-Sch 1.44 68.91 0.8354




Table S2. The fitted results of As(IIl) adsorption kinetics on Cr(VI)-incorporated
schwertmannite at pH 5 and 25 °C with the pseudo-second-order kinetic equation and

the power function.

pseudo-second-order kineticA power function®
Sample
K, ge (mmol-g!) R? a b K R?
Sch 12.82 0.83 0.9995 0.715 0.075 0.054 0.9732
0.5Cr-Sch 16.75 0.90 0.9998 0.808 0.058 0.047 0.9781
1Cr-Sch 12.86 0.94 0.9997 0.900 0.081 0.066 0.9528
2Cr-Sch 12.69 0.99 0.9998 0.844 0.087 0.073 0.9325

AThe pseudo-second-order kinetic equation: t/q=1/(K,q.>)*+(1/q.)*t, where g is the As
adsorption amount at a given time (mmol-g!), K, is the rate constant of adsorption
(g'mmol-*h!); q. is the As adsorption amount at equilibrium (mmol-g-')?; Bthe power
function: q; = a*t®, where q; is the As adsorption amount at a given time (mmol-g!), a
and b are constants with b <1. a*b (K) is also a constant, being the specific adsorption

rate at unit time, that is, when t =13.
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