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Figure S1. Potential environmental pathways for nanomaterials and physicochemical 

characteristics of ENMs that affect fate factors (Baun et al., 2017; Lamon et al., 2019; Miseljic 

and Olsen, 2014; Rosenbaum et al., 2008; Tortella et al., 2020)
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Figure S2. Relative importance of potential transformation processes in modeling environmental 

fate of nAg (darker shades indicate higher importance) (Baun et al., 2017; Hartmann et al., 2014)

As the current paper aims to develop freshwater ecotoxicity CF for nAg, studies that 

define fate and behavior of nAg are reviewed and factors affecting the fate of nAg are 

listed.(Baun et al., 2017; Dale et al., 2013; Furtado et al., 2015; Hartmann et al., 2014; Levard et 

al., 2012; Maiga et al., 2020; Peng et al., 2017; Tortella et al., 2020) Figure S2 shows the 

processes that are relevant to nAg and illustrates the relative importance of these processes using 

a color scheme.(Baun et al., 2017) Throughout the literature, it was found that nAg go through 

several transformation processes depending on their physicochemical characteristics as well as 

the properties of the release media with dissolution, oxidation/reduction and 

aggregation/agglomeration being the most dominant ones among others. Hartmann et al. argued 

that as nAg are unstable in the presence of light, photochemical transformation process may be 
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neglected. Also, as being an inorganic ENM, the biodegradation of nAg is not expected to be as 

relevant as the previously mentioned processes.(Hartmann et al., 2014) Peng et al. and 

Peijnenburg et al. provided comprehensive assessments on each of the potential environmental 

transformation process and the impacts of different conditions on those processes.(Peijnenburg et 

al., 2015; Peng et al., 2017) For instance, after explicitly defining the dynamics of aggregation of 

metallic ENMs, effects of size, shape, surface coating, pH, ionic strength and presence of organic 

matter on aggregation are elaborated in detail.(Peijnenburg et al., 2015; Peng et al., 2017; Quik et 

al., 2011) 

Review of characterization factor literature for nAg

In order to explore the previous studies that calculated CFs for nAg, a literature survey is 

conducted by using an academic search engine, Web of Science Core Collection, by searching 

combinations of key terms including characterization factors, nanomaterial, nanosilver and 

nanosilver-enabled. From this search, three studies were identified where CFs are derived for 

nAg.(Garvey et al., 2019; Miseljic and Olsen, 2014; Pu, 2017) Table S1, yellow shaded cells, 

present a summary of these studies along with the calculated/assumed FF, XF and EF, and 

derived CFs. 

As being the first CF study for nAg, Miseljic and Olsen used simplifying assumptions to 

estimate the freshwater ecotoxicity potential of nAg. They suggested that nAg will have a short 

substance residence time in freshwater (i.e. rapid transformation, aggregation and sedimentation 

time), which resulted in an FF of 1.(Miseljic and Olsen, 2014) They also assumed that the 

exposure is equal to the environmental concentration of nAg, and therefore neglected the XF. For 

EF, Miseljic and Olsen compiled in total of 21 EC50 values for three trophic levels (algae, 
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crustacean and fish) and calculated the EF as 8,576 PAF.m3/kg.(Miseljic and Olsen, 2014) 

Another study by Pu developed a fate model which involves calculating the FF from rate 

constants of certain transformation processes, such as advection, dissolution, sedimentation.(Pu, 

2017) For EF, Pu compiled toxicity data for three trophic levels (algae, crustacean and fish) and 

calculated the EF as 14,502 PAF.m3/kg. They argued that given that the XF calculation based on 

USEtox involves partitioning coefficients and they are not representative for ENMs, an ultra-

conservative XF needs to be assumed which is equal to considering 100% bioavailability.(Pu, 

2017) Lastly, Garvey et al. used an adapted version of USEtox model, where they computed 

realistic- and worst-case scenarios. They calculated the FF using substance specific partitioning 

coefficients as USEtox recommended. In order to calculate the EF, Garvey et al. used in total of 

73 different toxicity data (including EC50, IC50 and LC50) for four phyla (Arthropoda, Chordata, 

Chlorophyta and Heterokontophyla) and calculated EF with a range of 13,497 – 281,144 

PAF.m3/kg. For XF, they used statistical simulations since empirically determined exposure 

factors were not available in the literature, and suggested that nAg is 60-80% 

bioavailable.(Garvey et al., 2019) 

As previously mentioned, the XF and FF depend on the physicochemical properties of nAg 

and the conditions of the release media.(Lamon et al., 2019; Westerhoff and Nowack, 2013) 

Additionally, different size and coating of nAg have a significant impact on EF.(Temizel-

Sekeryan and Hicks, 2020) These factors are needed to be considered while developing nAg 

specific CFs. Overall, previous studies that derive nAg-CFs used various approaches and did not 

take into account the external (i.e. media dependent) and internal (i.e. ENM dependent) factors, 

which are critically important.
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Table S1. Parameters for fate factor calculation extracted from a mesocosm studies (Espinasse et 

al., 2018; Geitner et al., 2019, 2017; Stegemeier et al., 2017).

Parameter Symbol Unit Value (Range)

pH pH - 7-10

Conductivity S μS/cm 111 ± 20

Radius of nAg 𝑟𝑛𝐴𝑔 nm 24.65 (PVP-nAg)

Diameter of nAg (DLS) 𝑑𝑛𝐴𝑔 nm 49.3 (PVP-nAg)

Radius of SPM 𝑟𝑆𝑃𝑀 μm 0.75

Diameter of SPM 𝑑𝑆𝑃𝑀 μm 1.5 ± 12

Density of nAg 𝜌𝑛𝐴𝑔 kg/m3 10,500

Mass concentration of SPM 𝐶𝑚𝑎𝑠𝑠, 𝑆𝑃𝑀 mg/l 80 ± 12

Aggregation efficiency 𝛼ℎ𝑒𝑡 ‒ 𝑎𝑔𝑔 - 0.012

Depth of water ℎ𝑤 m 1.2

Volume of water 𝑉𝑤 m3 3.56 (H/W/D 
0.81/3.66/1.2)

Area of freshwater 𝐴𝑓𝑟𝑒𝑠ℎ𝑤𝑎𝑡𝑒𝑟 m2 2.97

Area of soil 𝐴𝑠𝑜𝑖𝑙 m2 0.732

Water temperature 𝑇𝑤𝑎𝑡𝑒𝑟 K 295

Dynamic viscosity of water 𝜇𝑤𝑎𝑡𝑒𝑟 Ns/m2 0.000958 (22oC)*

Initial concentration of nAg 𝐶0 ppm 10

Dissolved nAg at time t (2 days) 𝐶𝑖𝑜𝑛𝑠 ppm 0.53

* calculated based on the formula of  𝜇𝑤𝑎𝑡𝑒𝑟 = (2.414 ∗ 10 ‒ 5) ∗ 10247.8/(𝑇 ‒ 140) 
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Table S2. Remaining parameters for fate factor calculation that are not available in mesocosms 

(bold values are used in calculation)

Parameter Symbol Unit Value (Range) Reference

Density of water 𝜌𝑤𝑎𝑡𝑒𝑟 kg/m3 1000 (Fantke et al., 2017)
Boltzmann 
constant

𝑘𝐵 J/K 1.38E-23
(Deng et al., 2017a; Pu, 
2017)

Surface water 
shear rate 𝐺 s-1 10 (Meesters et al., 2014)

Gravitational 
acceleration on 
earth 

𝑔 m/s2 9.81 (Fantke et al., 2017)

Precipitation rate 𝑘𝑝𝑟𝑒𝑐𝑖𝑝𝑖𝑡𝑎𝑡𝑖𝑜𝑛 mm/yr 710 (for US) (Kounina et al., 2014)

1570 averaged value

Density of SPM 𝜌𝑆𝑃𝑀 kg/m3
2000a

1230b

1100 – 2500c

1250 (1100 – 2000)d

a (Salieri et al., 2015)
b (Pu, 2017)
c (Praetorius et al., 2012)
d (Quik, 2013)

Water run-off 
fraction 𝜑 % 37 (for US) (Kounina et al., 2014)
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Table S3. Considerations for calculating the freshwater ecotoxicity characterization factors for ENMs (listed in alphabetical order 

based on references, shaded cells represent nAg)

ENM
Considered processes 
for fate modeling FF (days) XF (%) EF 

(PAF.m3/kg)

CF 
(PAF.m3.day/kg or 
CTUe/kg)

Reference

CNT

Sedimentation 
(ksed= 6.8 10-10 s-1)×
Heteroaggregation 
(khetero-agg= 6.9 10-11 s-1)×
Advection 
(kadv= 6.91 10-9 s-1)×

1509 81.1 55.4 6.78+04 (Deng et al., 2017a)

GO

Sedimentation
(ksed= 2.5 10-8 s-1)×
Heteroaggregation
(khetero-agg= 2.3 10-7 s-1)×
Advection
(kadv= 4.6 10-8 s-1)×
Photodegradation
(kphotodeg= 1.3 10-7 s-1)×

27.2 93 30.7 7.78E+02 (Deng et al., 
2017b)

SWCNT
Calculated using 
substance specific 
partitioning coefficients

S1) 143
S2) matter of days

S1) 100
S2) 98

S1) 200
S2) 200

S1) 29000
S2) 3700

(Eckelman et al., 
2012)

Nano-TiO2
Dissolution
Aggregation

0.633 (free form)
44.8 (aggregated form)

not 
mentioned 26.9 (9.4−26.9) 1550 (free form) (Ettrup et al., 2017)

nAg
Calculated using 
substance specific 
partitioning coefficients

S1) 30
S2) 130

S1) 60
S2) 80

S1) 13497 
S2) 281144

S1) 2.43E+05 
S2) 2.92E+07 

(Garvey et al., 
2019)

Nano-TiO2

Calculated using 
substance specific 
partitioning coefficients

S1) 0.053
S2) 1

S1) 100
S2) 100

S1) 79
S2) 1180

S1) 4
S2) 1180

(Garvey et al., 
2019)
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SWCNT
Calculated using 
substance specific 
partitioning coefficients

S1) 10
S2) 143

S1) 100
S2) 100

S1) 260
S2) 288

S1) 2600
S2) 41184

(Garvey et al., 
2019)

C60

Calculated using 
substance specific 
partitioning coefficients

S1) 10
S2) 143

S1) 100
S2) 100

S1) 91
S2) 161

S1) 910
S2) 23023

(Garvey et al., 
2019)

nAg Assumed due to many 
unknowns 1 neglected 8576 8.57E+03 (Miseljic and 

Olsen, 2014)

Nano-TiO2
Assumed due to many 
unknowns 1 neglected 26.1 2.61E+01 (Miseljic and 

Olsen, 2014)

nCu
Sedimentation
Advection
Dissolution 

1.15 100 5185 5.96E+03 (Pu et al., 2016)

nAg

Sedimentation
Advection
(kadv= 8.1 10-9 s-1)×
Dissolution 
(kdiss=3.42 10-6 s-1)×

1.36 
(3.86E-03 – 3.38E+00) 100 14502 1.98E+04 (Pu, 2017)

Al2O3-NP
Sedimentation
Advection
(kadv= 8.1 10-9 s-1)×

2.28
(3.87E-03 – 1.28E+03) 100 53.083 1.21E+02 (Pu, 2017)

Au-NP
Sedimentation
Advection
(kadv= 8.1 10-9 s-1)×

2.28
(3.87E-03 – 1.18E+03) 100 80.7 1.84E+02 (Pu, 2017)

C60

Sedimentation
Advection
(kadv= 8.1 10-9 s-1)×

2.28
(3.87E-03 – 1.33E+03) 100 544 1.24E+03 (Pu, 2017)

CeO2-NP
Sedimentation
Advection
(kadv= 8.1 10-9 s-1)×

2.28
(3.87E-03 – 1.24E+03) 100 139 3.18E+02 (Pu, 2017)

nCu

Sedimentation
Advection
(kadv= 8.1 10-9 s-1)×
Dissolution 
(kdiss=5.5 10-7 s-1)×

2.06 
(3.87E-03 – 2.07E+01) 100 8999 1.85E+04 (Pu, 2017)
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nCuO

Sedimentation
Advection
(kadv= 8.1 10-9 s-1)×
Dissolution 
(kdiss=3.87 10-7 s-1)×

2.12
(1.37E-01 – 2.92E+01) 100 223 4.74E+02 (Pu, 2017)

Fe2O3-NP
Sedimentation
Advection
(kadv= 8.1 10-9 s-1)×

2.28 
(3.86E-03 – 1.26E+03) 100 228 5.20E+02 (Pu, 2017)

Fe3O4-NP
Sedimentation
Advection
(kadv= 8.1 10-9 s-1)×

2.28 
(3.87E-03 – 1.27E+03) 100 21739 4.96E+04 (Pu, 2017)

NiO-NP

Sedimentation
Advection
(kadv= 8.1 10-9 s-1)×
Dissolution 
(kdiss=2.18 10-7 s-1)×

2.19 
(3.87E-03 – 5.09E+01) 100 14.2 3.10E+01 (Pu, 2017)

Pt-NP
Sedimentation
Advection
(kadv= 8.1 10-9 s-1)×

2.28 
(3.86E-03 – 1.17E+03) 100 126 2.88E+02 (Pu, 2017)

SiO2-NP

Sedimentation
Advection
(kadv= 8.1 10-9 s-1)×
Dissolution 
(kdiss=3.79 10-6 s-1)×

1.31 
(3.86E-03 – 3.05E+00) 100 27.8 3.62E+01 (Pu, 2017)

Nano-TiO2

Sedimentation
Advection
(kadv= 8.1 10-9 s-1)×

2.28 
(3.87E-03 – 1.27E+03) 100 56.7 1.29E+02 (Pu, 2017)

ZnO-NP

Sedimentation
Advection
(kadv= 8.1 10-9 s-1)×
Dissolution 
(kdiss=5.12 10-7 s-1)×

2.07 
(3.87E-03 – 2.22E+01) 100 2863 5.94E+03 (Pu, 2017)

SWCNT
Calculated using 
substance specific 
partitioning coefficients

29 6.5E-04 650 1.25E-01 (Rodriguez-Garcia 
et al., 2014)
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MWCNT
Calculated using 
substance specific 
partitioning coefficients

92 100 8 7.40E+02 (Rodriguez-Garcia 
et al., 2014)

nCu
Calculated using 
substance specific 
partitioning coefficients

37 33 4500 5.52E+04 (Rodriguez-Garcia 
et al., 2014)

Nano-TiO2

Sedimentation 
Heteroaggregation 
Advection 

0.053 100 32.1 2.81E+01 (Salieri et al., 2015)
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Dissolution

4𝐴𝑔(𝑠) + 𝑂2 (𝑎𝑞)→ 2𝐴𝑔2𝑂(𝑠)                                                                                                                  (𝑆1)

𝐴𝑔2𝑂(𝑠) +  2𝐻 +
(𝑎𝑞)→ 2𝐴𝑔 +

(𝑎𝑞) +  𝐻2𝑂(𝑙)                                                                                        (𝑆2)

2𝐴𝑔(𝑠) +
1
2

𝑂2 (𝑎𝑞) + 2𝐻 +
(𝑎𝑞)→ 2𝐴𝑔 +

(𝑎𝑞) +  𝐻2𝑂(𝑙)                                                                       (𝑆3)

The second method for  calculation is using modified version of the solubility equilibrium 𝑘𝑑𝑖𝑠𝑠

(i.e. Ostwald-Freundlich relation) as presented in equations (S4) and (S5), which enables 

calculating size-dependent dissolution rates (Axson et al., 2015; Doody et al., 2016; Johnston et 

al., 2019; Ma et al., 2012). It is hypothesized that the amount of dissolved nAg per unit time is 

proportional with the surface area of nAg (Molleman and Hiemstra, 2017; Quik et al., 2011) as

𝑑𝑀
𝑑𝑡

= ‒ 𝑘𝑑𝑖𝑠𝑠 ∗ 𝑆𝑛𝐴𝑔 ∗ 𝐴                                                                                                                           (𝑆4)

𝑆𝑛𝐴𝑔 = 𝑆𝑏𝑢𝑙𝑘 ∗ exp (2 ∗ 𝛾 ∗
𝑉𝑚

𝑅 ∗ 𝑇 ∗ 𝑟𝑛𝐴𝑔 
)                                                                                         (𝑆5)

where  is the dissolved mass of nAg (kg),  is time (s),  is the solubility of nAg (kg/m3),  is 𝑀 𝑡 𝑆𝑛𝐴𝑔 𝐴

the surface area of nAg (m2),  is the solubility of bulk silver (kg/m3),  is the surface tension 𝑆𝑏𝑢𝑙𝑘 𝛾

of nAg (typically 1 for nAg, J/m2),  is the molar volume of nAg (m3/mol), is the gas constant 𝑉𝑚 𝑅 

(J/mol.K),  is the temperature (K) and is the radius of nAg (m). Ma et al. calculated the 𝑇 𝑟𝑛𝐴𝑔 

for PVP coated nAg as 5.07×10-5 s-1 using this method (Ma et al., 2012). Different from the 𝑘𝑑𝑖𝑠𝑠 

previously explained methods, Dale et al. compiled a list of model parameters for nAg 

transformation where they included a range for based on the level of dissolved oxygen in 𝑘𝑑𝑖𝑠𝑠 

freshwaters from 1.3×10-8 d-1 (mg O2/m3)-1 to 5.1×10-4 d-1 (mg O2/m3)-1 with a nominal value of 

8.5×10-6 d-1 (mg O2/m3)-1 (Dale et al., 2015; Levard et al., 2012; Liu et al., 2010).

Hetero-aggregation
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𝑘ℎ𝑒𝑡 ‒ 𝑎𝑔𝑔 = 𝑘𝑐𝑜𝑙𝑙 ∗ 𝛼ℎ𝑒𝑡 ‒ 𝑎𝑔𝑔 ∗ 𝐶𝑆𝑃𝑀                                                                                                      (𝑆6)

where  is aggregation efficiency,  is suspended particulate matter concentration 𝛼ℎ𝑒𝑡 ‒ 𝑎𝑔𝑔 𝐶𝑆𝑃𝑀

(1/m3) and  is the collision rate (m3/s).   needs to be calculated using equation (S7) as𝑘𝑐𝑜𝑙𝑙 𝐶𝑆𝑃𝑀

𝐶𝑆𝑃𝑀 =
𝐶𝑚𝑎𝑠𝑠, 𝑆𝑃𝑀

4
3

∗ 𝜌𝑆𝑃𝑀 ∗ 𝜋 ∗ (𝑑𝑆𝑃𝑀

2 )3 

                                                                                                            (𝑆7)

where is the mass concentration of suspended particulate matter in water (kg/m3),  is 𝐶𝑚𝑎𝑠𝑠, 𝑆𝑃𝑀 𝜌𝑆𝑃𝑀

the density of suspended particulate matter (kg/m3) and  is the diameter of the suspended 𝑑𝑆𝑃𝑀

particulate matter in water (m). Another component of equation (S6), the collision rate, can be 

calculated using equation (S8).

𝑘𝑐𝑜𝑙𝑙

=
2𝑘𝐵𝑇𝑤𝑎𝑡𝑒𝑟

3𝜇𝑤𝑎𝑡𝑒𝑟
∗

(𝑟𝑛𝐴𝑔 + 𝑟𝑆𝑃𝑀)2

𝑟𝑛𝐴𝑔 ∗ 𝑟𝑆𝑃𝑀
+

4
3

𝐺(𝑟𝑛𝐴𝑔 + 𝑟𝑆𝑃𝑀)3 + 𝜋(𝑟𝑛𝐴𝑔 + 𝑟𝑆𝑃𝑀)2 ∗ |𝑣𝑛𝐴𝑔
𝑠𝑒𝑡 ‒ 𝑣𝑆𝑃𝑀

𝑠𝑒𝑡 |                                                                                                              
(𝑆8)

where  is Boltzmann constant (JK-1),  is the temperature of the water (K),  is the 𝑘𝐵 𝑇𝑤𝑎𝑡𝑒𝑟 𝜇𝑤𝑎𝑡𝑒𝑟

dynamic viscosity of water (Ns/m2), is the radius of nAg (m),  is the radius of suspended 𝑟𝑛𝐴𝑔 𝑟𝑆𝑃𝑀

particulate matter (m),  is the shear rate of the water (1/s), is the settling velocity of nAg 𝐺 𝑣𝑛𝐴𝑔
𝑠𝑒𝑡  

(m/s) and  is the settling velocity of suspended particulate matter (m/s). Equations (S9) and 𝑣𝑆𝑃𝑀
𝑠𝑒𝑡

(S10) are used to calculate the settling velocities of nAg and SPM to be used in the collision rate 

calculation.

𝑣𝑛𝐴𝑔
𝑠𝑒𝑡 =

2
9

∗
𝜌𝑛𝐴𝑔 ‒ 𝜌𝑤𝑎𝑡𝑒𝑟

𝜇𝑤𝑎𝑡𝑒𝑟
∗ 𝑔 ∗ 𝑟 2

𝑛𝐴𝑔                                                                                                    (𝑆9)

𝑣𝑆𝑃𝑀
𝑠𝑒𝑡 =

2
9

∗
𝜌𝑆𝑃𝑀 ‒ 𝜌𝑤𝑎𝑡𝑒𝑟

𝜇𝑤𝑎𝑡𝑒𝑟
∗ 𝑔 ∗ 𝑟 2

𝑆𝑃𝑀                                                                                                (𝑆10)

where  is the density of nAg (kg/m3),  is the density of water (kg/m3),  is the 𝜌𝑛𝐴𝑔 𝜌𝑤𝑎𝑡𝑒𝑟 𝜇𝑤𝑎𝑡𝑒𝑟

dynamic viscosity of water (Ns/m2),  is is the gravitational acceleration on earth (m/s2), is 𝑔 𝑟𝑛𝐴𝑔 
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the radius of nAg (m),  is the density of suspended particulate matter (kg/m3) and is the 𝜌𝑆𝑃𝑀 𝑟𝑆𝑃𝑀 

radius of suspended particulate matter (m).

Sedimentation

Scenario 2

𝑘𝑠𝑒𝑑
' = 𝑘𝑛𝐴𝑔

𝑠𝑒𝑑 + 𝑘𝑎𝑔𝑔 ‒ 𝑠𝑒𝑑 + 𝑘𝑎𝑡𝑡 ‒ 𝑠𝑒𝑑                                                                                                  (𝑆11)

where  is the sedimentation rate constant (s-1),  is the minimum value of either 𝑘𝑛𝐴𝑔
𝑠𝑒𝑑 𝑘𝑎𝑔𝑔 ‒ 𝑠𝑒𝑑

pseudo-sedimentation rate constant for homo-aggregated nAg or the homo-aggregation rate 

constant as expressed in equation (S12) (s-1) and is the minimum value of either pseudo-𝑘𝑎𝑡𝑡 ‒ 𝑠𝑒𝑑 

sedimentation rate constant for hetero-aggregated (i.e. attached) nAg or the hetero-aggregation 

(i.e. attachment) rate constant as expressed in equation (S13) (s-1).

𝑘𝑎𝑔𝑔 ‒ 𝑠𝑒𝑑 = 𝑚𝑖𝑛𝑖𝑚𝑢𝑚 (𝑘ℎ𝑜𝑚𝑜 ‒ 𝑎𝑔𝑔,𝑘𝑝𝑠 ‒ ℎ𝑜𝑚𝑜 ‒ 𝑎𝑔𝑔)                                                                      (𝑆12)

where  is the aggregation rate constant and  is the pseudo-sedimentation rate constant 𝑘𝑎𝑔𝑔 𝑘𝑝𝑠 ‒ 𝑎𝑔𝑔

for aggregated nAg. In the current study, homo-aggregation is neglected, therefore this 

component is not calculated.

𝑘𝑎𝑡𝑡 ‒ 𝑠𝑒𝑑 = 𝑚𝑖𝑛𝑖𝑚𝑢𝑚 (𝑘ℎ𝑒𝑡 ‒ 𝑎𝑔𝑔,𝑘𝑝𝑠 ‒ ℎ𝑒𝑡 ‒ 𝑎𝑔𝑔)                                                                               (𝑆13)

where  is the attachment rate constant and  is the pseudo-sedimentation rate 𝑘ℎ𝑒𝑡 ‒ 𝑎𝑔𝑔 𝑘𝑝𝑠 ‒ ℎ𝑒𝑡 ‒ 𝑎𝑔𝑔

constant for attached nAg.

𝑘𝑛𝐴𝑔
𝑠𝑒𝑑 =

𝑣𝑛𝐴𝑔
𝑠𝑒𝑡

ℎ𝑤
                                                                                                                                            (𝑆14)

where is the settling velocity of nAg as expressed in equation (S9) (m/s) and  is the depth 𝑣𝑛𝐴𝑔
𝑠𝑒𝑡 ℎ𝑤

of the water compartment (m). 

𝑘𝑝𝑠 ‒ ℎ𝑒𝑡 ‒ 𝑎𝑔𝑔 =  
𝑣𝑆𝑃𝑀

𝑠𝑒𝑡

ℎ𝑤
                                                                                                                              (𝑆15)
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where is the settling velocity of suspended particulate matter as expressed in equation (S10) 𝑣𝑆𝑃𝑀
𝑠𝑒𝑡

(m/s) and  is the depth of the water compartment (m). ℎ𝑤

Table S4. Calculated parameters based on the values presented in Tables S2-S3 (shaded values 

are used in FF calculation for the respective scenarios)

Parameter Symbol Unit Value (Scenario 1) Value (Scenario 2)

Dissolution rate constant 𝑘𝑑𝑖𝑠𝑠 s-1 3.15×10-7 3.15×10-7

Hetero aggregation rate 
constant

𝑘ℎ𝑒𝑡 ‒ 𝑎𝑔𝑔 s-1 3.44×10-5 -

Concentration of SPM 𝐶𝑆𝑃𝑀 1/m3 2.88×1013 2.88×1013

Collision rate 𝑘𝑐𝑜𝑙𝑙 m3/s 9.95×10-17 9.95×10-17

Settling velocity of nAg 𝑣𝑛𝐴𝑔
𝑠𝑒𝑡 m/s 1.31×10-8 1.31×10-8

Settling velocity of SPM 𝑣𝑆𝑃𝑀
𝑠𝑒𝑡 m/s 7.29×10-7 7.29×10-7

Sedimentation rate 
constant

𝑘𝑠𝑒𝑑 s-1 1.09×10-8 6.19×10-7

Advection rate constant 𝑘𝑎𝑑𝑣 s-1 2.05×10-8 2.05×10-8

Removal rate constant for 
freshwater

𝑘𝑤,𝑤 s-1 3.48×10-5 9.54×10-7

Fate factor FF days 0.33 12
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Table S5. List of characterization factors calculated in the current study and the literature values

Reference Scenarios XF 
(%)

FF 
(days)

EF 
(PAF.m3/kg)

CF 
(PAF.m3.day/kg 

or CTUe/kg)
S1 60 30 1.35×104 2.43×105(Garvey et al., 

2019) S2 80 130 2.81×105 2.92×107

(Pu, 2017) - 100 1.36 1.45×104 1.97×104

(Miseljic and 
Olsen, 2014)

- 100 1 8.58×103 8.58×103

S1 – Optimistic 
(regardless of coating)

100 0.33 8.04×103 2.67×103

S1 – Skeptical 
(regardless of coating)

100 0.33 1.47×104 4.88×103

S2 – Optimistic 
(regardless of coating)

100 12.13 8.04×103 9.74×104

S2 – Skeptical 
(regardless of coating)

100 12.13 1.47×104 1.78×105

S1 – Optimistic 
(PVP coated)

100 0.33 6.58×103 2.19×103

S1 – Skeptical 
(PVP coated)

100 0.33 1.93×104 6.42×103

S2 – Optimistic 
(PVP coated)

100 12.13 6.58×103 7.98×104

This study

S2 – Skeptical 
(PVP coated)

100 12.13 1.93×104 2.34×105

USEtox 
spreadsheet

For ionic silver Ag (I) 41.2 18.1 2.60×104 1.94×105

18



Table S6. Scenario 1: sensitivity factors (SF) based on 20% change of inputs on the rate 

constants and fate factor. Reported numbers are SFs, where red cells indicate sensitive inputs.

𝑑𝑛𝐴𝑔 𝑑𝑆𝑃𝑀 𝜌𝑛𝐴𝑔 𝛼ℎ𝑒𝑡 ‒ 𝑎𝑔𝑔 𝐶𝑚𝑎𝑠𝑠, 𝑆𝑃𝑀 𝐶0 𝐶𝑖𝑜𝑛𝑠 𝜌𝑆𝑃𝑀

𝑘ℎ𝑒𝑡 ‒ 𝑎𝑔𝑔 -1.67E-01 -4.04E-01 -5.50E-05 1.67E-01 1.67E-01 0.00E+00 0.00E+00 -1.91E-01

𝑘𝑠𝑒𝑑 3.06E-01 0.00E+00 1.81E-01 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00

𝑘𝑑𝑖𝑠𝑠 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 -2.06E-01 1.71E-01 0.00E+00

𝑘𝑎𝑑𝑣 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00

𝑘𝑤,𝑤 -1.65E-01 -3.98E-01 1.51E-05 1.65E-01 1.65E-01 -1.55E-03 1.87E-03 -1.89E-01

FF 1.41E-01 2.85E-01 -1.51E-05 -1.98E-01 -1.98E-01 1.54E-03 -1.87E-03 1.59E-01

Table S7. Scenario 1: sensitivity factors (SF) based on 20% change of rate constants on fate 

factor. Reported numbers are SFs, where red cells indicate sensitive inputs.

𝑘ℎ𝑒𝑡 ‒ 𝑎𝑔𝑔 𝑘𝑠𝑒𝑑 𝑘𝑑𝑖𝑠𝑠 𝑘𝑎𝑑𝑣

𝑘𝑤,𝑤 1.65E-01 6.29E-05 1.81E-03 -1.18E-04

FF -1.98E-01 -6.29E-05 -1.81E-03 -1.18E-04
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Table S8. Scenario 2: sensitivity factors (SF) based on 20% change of inputs on the rate 

constants and fate factor. Reported numbers are SFs, where red cells indicate sensitive inputs.

𝑑𝑛𝐴𝑔 𝑑𝑆𝑃𝑀 𝜌𝑛𝐴𝑔 𝛼ℎ𝑒𝑡 ‒ 𝑎𝑔𝑔 𝐶𝑚𝑎𝑠𝑠, 𝑆𝑃𝑀 𝐶0 𝐶𝑖𝑜𝑛𝑠 𝜌𝑆𝑃𝑀

𝑘𝑠𝑒𝑑 7.72E-03 3.02E-01 3.89E-03 0.00E+00 0.00E+00 0.00E+00 0.00E+00 3.51E-01

𝑘𝑑𝑖𝑠𝑠 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 -2.06E-01 1.71E-01 0.00E+00

𝑘𝑎𝑑𝑣 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00

𝑘𝑤,𝑤 5.02E-03 2.19E-01 2.53E-03 0.00E+00 0.00E+00 -5.96E-02 6.39E-02 2.60E-01

FF -5.05E-03 -2.80E-01 -2.53E-03 0.00E+00 0.00E+00 5.63E-02 -6.82E-02 -3.51E-01

Table S9. Scenario 2: sensitivity factors (SF) based on 20% change of rate constants on fate 

factor. Reported numbers are SFs, where red cells indicate sensitive inputs.

𝑘𝑠𝑒𝑑 𝑘𝑑𝑖𝑠𝑠 𝑘𝑎𝑑𝑣

𝑘𝑤,𝑤 1.15E-01 6.19E-02 4.28E-03

FF -1.30E-01 -6.60E-02 -4.30E-03
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