Supplementary materials

Response of primary root to nitrogen-doped carbon dots in *Arabidopsis thaliana*: Alterations in auxin level and cell division activity

The procedure for the determination of the fluorescence quantum yields

Fluorescence quantum yields of the N-CDs were obtained by using the comparative method. The quantum yield of N-CDs, Φ x, is calculated according to the following equation:

$$\Phi_x = \Phi_{std} \left(\frac{F_x}{F_{std}} \right) \left(\frac{A_{std}}{A_x} \right) \left(\frac{n_x}{n_{std}} \right)^2$$

Where Φ , F, A, and n are quantum yield, integral of the fluorescence emission scan, absorbance, and refractive index, respectively. The subscript "x" denotes the type of sample to be analyzed (i.e., N-CDs). The subscript "std" refers to the standard fluorophore of known quantum yield, for an example, quinine sulfate used in present work (The quantum yield of quinine sulfate dissolved in 0.1 M H2SO4 is 0.54.).

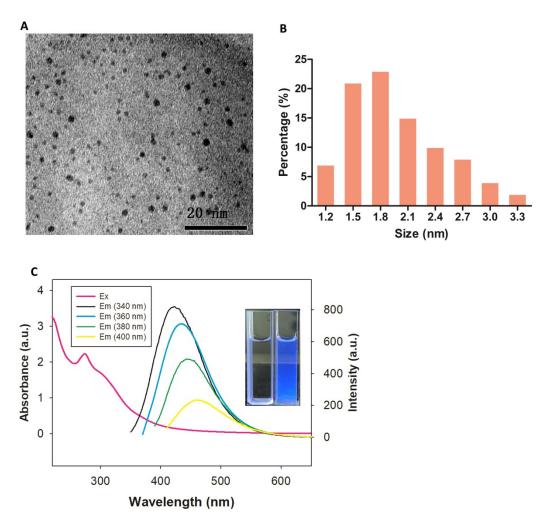


Figure S1. The morphology and characterization of N-CDs. (A) TEM image of N-

CDs. (**B**) Size frequency distribution of N-CDs. (**C**) UV/Vis absorption and PL spectra of N-CDs at different excitation wavelengths (inset: pure water (left) and N-

CDs aqueous solution (right) under UV irradiation (365nm)).

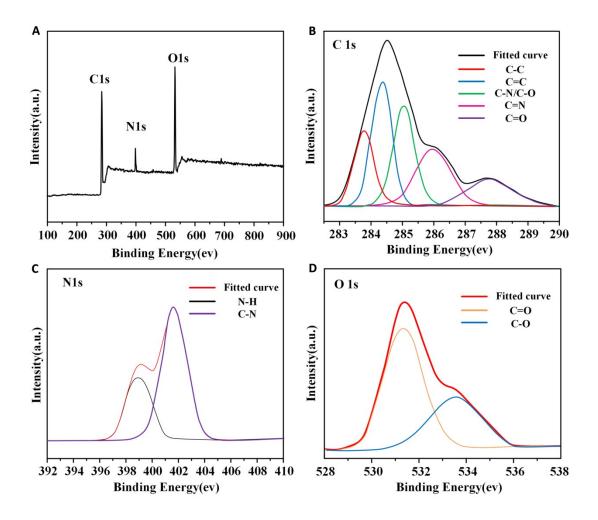


Figure S2. (A) XPS spectrum and high resolution XPS spectra of (B) C 1s, (C) N 1s

and **(D)** O 1s of the N-CDs.

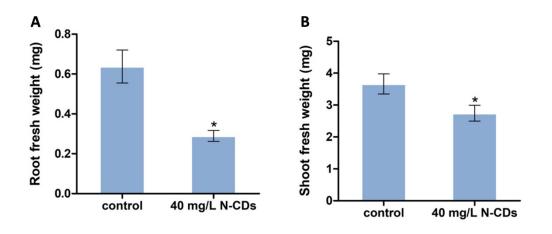


Figure S3. The effects of N-CDs on fresh weights of different *Arabidopsis* parts.(A)

The fresh weight of the Arabidopsis root after 4 days of incubation. (B) The fresh

weight of the Arabidopsis shoot after 4 days of incubation. The values were given as

the mean \pm SD of triplicate samples. Asterisks represent significant difference at p <

0.05 compared to the control.

Gene name	Forward	Reverse
YUC2	CAAGATCAAATGCGGAAAGACT	CCGAATAATGCATTACCCGTTT
YUC3	ATGATGAGACGTTCGGGCTG	CGTTGCCACCACAATCCATC
YUC5	TCTGGCGCATCAAGACAACA	TCACCTCGCCTTCAAACTCC
YUC9	CTCGTAGATGGTCAGAAGCTAG	AATGTCTTGAGCGATGTTAACG
SUR1	GAGATCTTCCGCACAAGTTAAC	CAATGGCTTCGATACCTTCAAG
<i>CYP79B2</i>	GAAAGTTGTGATGACGGAACTC	GCATTTCCACAGTAATGCCTAG
AMI1	TCTGAACTGATAACGGCTCTTT	AAAACCGTCTGAGCCATACTTA
ASA1	CTCTGAGAAATGGAACCCTGAT	ATGCTTTCTTTTCCACGTGATC
Histone4	GATTCGTCGTCTTGCTCGTAG	CAGTCACCGTCTTCCTCCTC
E2Fa	ACCATCCACCGTCATCTC	GCTCCTGTCGTTATTATTACTG
CYCB1;1	CTCAAAATCCCACGCTTCTTGTGG	CACGTCTACTACCTTTGGTTTCCC
WEE1	TGGTGCTGGACATTTCAGTCGG	CAAGAGCTTGCACTTCCATCATAG
CDC25	GCTCGTTTGATGACAAGATCTC	GCGTTCCAAGATCATGATGTTT
WOX5	TCTCCGTGAAAGGTCGAAGC	GGAGTTCTAAGACCGGCTCG
MSH2	TCTGACTAGGCGAGTTCTT	CACCTCTCCAGGGAATCA
MSH6	ATTAGTTAGAAAGGGCTATCGGG	AACAACTGCACATACTTCGC

Table S1. Primers for qRT-PCR.