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Table SI.1 Calculated/linearly fitted scattering coefficient (a) along the side-emitting optical

fiber treated with different concentration of Na,SO,.

Fiber length (cm) / Scattering 0 0.02 0.05 0.10 0.15 0.20
coefficient (a)/ [Na,SOy4] (mol/L)

2 0.139 | 0.191 | 0.217 | 0.268 | 0.374 | 0.356

4 0.109 | 0.193 | 0.188 | 0.248 | 0.364 | 0.392

6 0.122 | 0.149 | 0.198 | 0.210 | 0.370 | 0.378

Average 0.123 | 0.178 | 0.201 | 0.242 | 0.369 | 0.375

Standard deviation 0.015 | 0.025 | 0.015 | 0.029 | 0.005 | 0.018

Linearly fitted o 0.137 | 0.163 | 0.201 | 0.265 | 0.329 | 0.394

Because the scattering coefficient depends on fiber properties and coating layers, the value on
each concentration remains a constant at any length of the fiber, and results were linearly fitted
from 0 M to 0.2 M. Based on the irradiance results and Equation (3), the scattering coefficient (o)
was calculated at a distance of Ax=2 cm (Figure 2f) because we measured the light intensity at
every 2 cm. Table SI.1 shows the calculated and linearly fitted scattering coefficients at different
SEOF positions (2, 4, and 6 cm) treated with different ionic strengths. Because a portion of light
was reflected back at the distal end, the scattering coefficient at 8 cm was not considered. There
is no significant difference between fitted data and experimental data (p<0.05). The a increased
from 0.123 to 0.375 when the concentration of Na,SO, increased from 0 to 0.2 M. Further
increasing the ionic strength after the concentration of Na,SO, reached 0.2 M did not keep

increasing the scattering coefficient.

Table SI.2 Calculated UC of SEOF under different Na,SO,4 concentrations.

[Na,SO.] (mol/L) 0 0.02 | 0.05 | 0.10 | 0.15 | 0.20 | Modified
SEOF

UC 0.523 | 0.417 | 0.363 | 0.309 | 0.166 | 0.134 0.805




Table SI.3 Calculated scattering coefficient (o) from the modelling data along the SEOF with

the separation distance from 1 to 100 nm

Separation distance(a) /
Scattering coefficient (a)/ Standard
Fiber length (cm) 2 4 6 8 Average | deviation

1 0.671 | 0.463 | 0.387 | 0.427 | 0.487 0.127
5 0.550 | 0.417 | 0.316 | 0.325 | 0.402 0.109
10 0.428 | 0.344 | 0.259 | 0.344 | 0.344 0.069
15 0.335 | 0.285 | 0.229 | 0.280 | 0.283 0.044
20 0.262 | 0.230 | 0.177 | 0.255 | 0.231 0.039
25 0.205 | 0.169 | 0.153 | 0.191 | 0.179 0.023
30 0.152 | 0.130 | 0.102 | 0.179 | 0.141 0.033
35 0.131 | 0.102 | 0.086 | 0.131 | 0.113 0.022
40 0.116 | 0.065 | 0.092 | 0.096 | 0.092 0.021
45 0.089 | 0.065 | 0.053 | 0.094 | 0.075 0.020
50 0.076 | 0.043 | 0.034 | 0.091 | 0.061 0.027
55 0.066 | 0.036 | 0.042 | 0.051 | 0.049 0.013
60 0.067 | 0.026 | 0.027 | 0.063 | 0.046 0.023
65 0.054 | 0.023 | 0.011 | 0.060 | 0.037 0.024
70 0.034 | 0.035 | -0.006 | 0.074 | 0.034 0.033
75 0.035 | 0.012 | -0.001 | 0.063 | 0.027 0.028
80 0.060 | -0.004 | 0.005 | 0.043 | 0.026 0.030
85 0.053 | 0.008 | 0.000 | 0.039 | 0.025 0.025
90 0.013 | 0.015 | 0.006 | 0.058 | 0.023 0.024
95 0.050 | 0.003 | -0.016 | 0.057 | 0.023 0.036
100 0.023 | 0.016 | -0.002 | 0.043 | 0.020 0.018
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Figure SI.1 UV-C light attenuation inside the high-OH Thorlabs optical fiber. The distance

between fiber cut end and LED is zero.
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Figure SI.2 Effect of nanoparticle size on 265 nm UV-C LED launched optical fibers.
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Figure SI.3 Effect of nanoparticle loading on 265 nm UV-C LED launched optical fibers.
Particle loading was varied by the number of dip-coating cycles. Each dipping cycle resulted in

(0.41 pg/ mm? + 6%) additional loading for 200 nm silica NPs.
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Figure SI.4 TEM images and the size distribution of silica sphere nanoparticles.
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Figure SI.5 Light irradiance measured at different distances along the optical fiber with 200 nm
nanoparticles, 200 nm nanoparticles with CyTop™ polymer, without NP (bare fiber), and bare
fiber with Na,SOj,.
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Figure SI.6 System diagram of SEOF scattering efficiency model.
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Figure SI.7 Scattering efficiency model variables and input parameters.
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Figure SI.8 Radiation pattern of UV-C LED in the first principle model.
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Figure S1.9 Evanescent wave intensity as a function of radial distance (nm) from the optical

fiber surface for 265 nm light at an incident angle of 90° and 74.5° (minimum).

DLVO and Energy barrier calculation

Hamaker constant (As;,)

A= (A =AY A~ 40)

Where A, for water = 4.35%10-20
Ay, for glass fiber =6%10-20
As; for aminated silica = 6.5%10-2°
A31,=1.688*102!

Use the following relationships:



—Amalaz

V= 6(611 + Clz)Ho
2 2 —kHo
Wi = s X Cllaz(l/ll + /) ) 2}//1(//2 : 11’1(1 + e_kHO ) + ln(l _ e_zkHO)]
4(a1+az) (l//l +l//2) l-e

Wrorar = W ivw + Y oL

Where /1 vw is the potential for attraction by London van der waals forces

W, is the potential for repulsion due to double layer repulsion

Radii of glass fiber a;=5*10*m

Radii of aminated silica particles a,=10" m

Surface potential for glass fiber \/;=-0.065V
Surface potential for aminated silica \J/,=+0.028V

€Epg =7%10°10

Table SI.4 Thickness of electrical double layer versus ionic strength.

Ionic strength (M) Thickness of electrical
double layer //k (nm)

0.06 1.143

0.15 0.723

0.30 0.511

0.45 0.417

0.60 0.361
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Figure SI1.10 Energy of interaction between fiber interface and aminated silica nanoparticles

with separation distance under ionic strength at (a) 0.06 M, (b) 0.15 M, (c) 0.30 M, (d) 0.45 M,

and (e) 0.60 M. (f) shows the net energy of interaction under ionic strength from 0.06 M to 0.60

M. ‘PLVW, \PDL and \PTOTAL represents the potential for attraction by London van der Waals

forces, potential for repulsion due to double layer repulsion and total energy barrier, respectively.
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Figure SI.11 Energy of interaction between two aminated silica nanoparticles with separation

distance under ionic strength at (a) 0.06 M, (b) 0.15 M, (¢) 0.30 M, (d) 0.45 M, and (e) 0.60 M. (f)

shows the net energy of interaction under ionic strength from 0.06 M to 0.60 M. Yivw, Yoo and

"PTOT AL Tepresents the potential for attraction by London van der Waals forces, potential for

repulsion due to double layer repulsion and total energy barrier, respectively.
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Figure SI1.12 Natural logarithm fit of light intensity along optical fiber with and without different
concentration of ionic strength treatment. Slope of fitted equation represents the scattering
coefficient (o) at each condition.

Table SI.5S Comparation between proposed method with other methods reported in literature.

Application | Type of Fiber UC value | Wavelength Reference
Nanoparticle | Length utilized in fiber
uUv-C SiO, >30 cm 0.52 265 nm This work
disinfection | SiO, 10 cm 0.15 265 nm Lopez et al.
2020 M
Photo- TiO, 10 cm 0.04 365 nm Wang et al.
catalysis 2003 [
Ti0O, 6.5 cm 0.14 365 nm Song et al.
2021 [3
TiO, 48 cm <0.1 365 nm Hofstadler et
al. 1994 4
TiO, 15 cm 0.05 375 nm Peill et al.
1998 [3]
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