Electronic Supplementary Material (ESI) for Environmental Science: Nano. This journal is © The Royal Society of Chemistry 2021

Supporting Information

Bimetallic FeMn catalysts derived from metal organic frameworks

efficient for photocatalytic removal of quinolones without oxidant

Xin Li,^a Zhiyu Yang,^a Di Hu,^a Anqi Wang,^a Yuwen Chen,^a Yizhe Huang,^a Man Zhang,^a

Haoran Yuan^b and Kai Yan*a

^a Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, School of Environmental Science and Engineering, Sun Yat-sen University, 135

Xingang Xi Road, Guangzhou 510275, P. R. China

^b Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou 510640, P.

R. China

* Corresponding author E-mail addresses: yank9@mail.sysu.edu.cn (K. Yan)

Contents

Materials

Characterization tools

Table S1 Parameters of specific surface areas and pore structures of the FeMn

Table S2 Fe/Mn-based materials in the field of photocatalysis

Table S3 The possible intermediates of CIP degradation in the Fe₁Mn₁/light system

Fig. S1 XRD patterns of samples obtained with separate Fe-BTC or $Mn(NO_3)_2$ ·4H₂O precursors.

Fig. S2 FT-IR spectra of pure Fe/Mn, Fe₁Mn₂, Fe₁Mn₁, and Fe₂Mn₁ samples.

Fig. S3 Pore size distribution of synthetic materials FeMn catalysts.

Fig. S4 SEM analysis of the fabricated Fe₁Mn₁ catalyst related to Fig. 3d.

Fig. S5 HPLC chromatograms of CIP solution measured at different reaction time.

Fig. S6 Mass spectra and proposed structure of detected intermediate products.

Fig. S7 Magnetic detection of Fe₁Mn₁ nanocomposite.

Fig. S8 XPS (C 1s) spectra of the Fe_1Mn_1 catalyst.

Fig. S9 FT-IR analysis of the fresh and reacted Fe₁Mn₁ catalyst.

Fig. S10 g Value of the obtained catalysts before and after irradiation.

Fig. S11 UV-vis DRS spectra of FeMn samples.

Fig. S12 (a) Cyclic voltammetry (CV) curves and (b) electrochemical impedance spectroscopy (EIS) spectra of Fe_1Mn_1 , Fe_1Mn_2 , Fe_2Mn_1 and pure Fe.

References

Materials

Ofloxacin (OFL, 98 %), ciprofloxacin (CIP, \geq 98 %), enrofloxacin (ENR, 98 %), levofloxacin (LEV, >98 %) and norfloxacin (NOR, 98 %) were obtained from Aladdin (Shanghai, China). 1,3,5-benzenetricarboxylic acid (BTC, 98 %, Macklin), sodium hydroxide (NaOH, 97 %, Macklin), iron(III) nitrate nonahydrate (Fe(NO₃)₃·9H₂O, 99.99 %, Macklin), Manganese(II) nitrate tetrahydrate (Mn(NO₃)₂·4H₂O, 98 %, Aladdin), formic acid (HCOOH, \geq 98 %, Aladdin), acetonitrile (C₂H₃N, \geq 99.95 %, Fisher chemical), tert-butyl alcohol (TBA, 99.8 %, Alfa Aesar), EDTA disodium salt dihydrate (EDTA-2Na, 98 %, Macklin), p-benzoquinone (p-BQ, 99 %, Macklin), 2,2,6,6-tetramethylpiperidine-1-oxyl (TEMPO, 98 %, Macklin), furfuryl alcohol (FFA, 98 %, Macklin). All chemicals were at least analytical reagent and could be used directly without further purification. The water used in all experiments was ultra-pure deionized.

Characterization tools

The synthesized Fe-BTC, Fe_xMn_y (x: y = 2:1, 1:1, 1:2), pure Fe/Mn were characterized by X-ray diffraction (XRD, UltimalV) using Cu K*a* radiation (26 mA, 40 kV) at room temperature. The 2 θ scanning angle range was from 5-90° with a step of 5 °/min. Besides, Fourier transform-infrared spectroscopy (FT-IR, Nicolet iS50) was used to qualitatively analyze the functional groups in sample molecules. The morphology of the powders was collected by scanning electron microscopy (SEM, Sigma 500) with an acceleration voltage of 10 kV. The structural information was further collected by

transmission electron microscopy (TEM, FEI Tecnai G2 F20 electron microscope) accelerated at 200 kV with Electronic Differential System (EDS, OXFORD X-max 80T). The surface chemical states and valence band spectrum of FeMn were measured with an X-ray photoelectron spectroscopy/ESCA (XPS, ESCALAB 250) (Thermo Fisher Scientific) with Mono Al K α source (energy 1486.6 eV). Ultraviolet visible diffuse reflectance (UVDF, UV-2600) was used to study the light absorption properties of FeMn samples. The quality change of Fe-BTC was monitored by TGA 5500, during the sample temperature program. The Brunauer-Emmett-Teller (BET) surface area and pore size distribution of FeMn were examined at 77 K by ASAP 2020 adsorption instrument, and samples were out-gassed under a vacuum at 120 °C for 8 h prior to the measurements. The concentration of total organic carbon (TOC) in the solution was analyzed by a TOC analyzer (Vario TOC select) after filtering through the membrane (0.22 µm size). The leaching of metal ions in the solution was examined by Inductively Coupled Plasma Optical Emission Spectrometer (ICP-OES, Perkin Elmer, Avio 500). Electron Paramagnetic resonance (EPR) spectra were recorded on a Bruker A300 spectrometer, and 5,5-dimethyl-1-pyrrolidine-N-oxide (DMPO) was applied as the spin-trapping agent.

Sample	Specific surface area	Total pore	Average pore size	
	$(m^2 g^{-1})$	volume	(nm)	
		(cm ³ g ⁻¹)		
Fe ₂ Mn ₁	73.6	0.26	14.0	
Fe ₁ Mn ₁	122.5	0.33	13.7	
Fe ₁ Mn ₂	100.4	0.33	12.6	
Pure Fe	148.8	0.45	14.9	

Table S1 Parameters of specific surface areas and pore structures of the FeMn

Catalyst	Synthesis method	nthesis method Contaminant Reactivity		Mechanism	Refs.
MnO ₂ /Mn	Hydrothermal	Rhodamine B	$[PMS] = 0.4 \text{ g } \text{L}^{-1},$	$SO_4^-\bullet$ and	1
Fe ₃ O ₄	method	10 mg L ⁻¹	$[catalyst] = 0.2 \text{ g } \text{L}^{-1},$	•OH	
			98.0 % removal in 15		
			min		
Mn _{0.6} Zn _{0.4}	Citrate combustion	BPA	[PMS] = 0.5 mM,	SO₄ [−] •, •OH	2
Fe ₂ O ₄	method	0.1 mM	$[catalyst] = 0.2 \text{ g } \text{L}^{-1},$	and ¹ O ₂	
			95.8 % removal in 60		
			min		
MnO _x -	One-step pyrolysis	Ciprofloxacin	$[H_2O_2] = 68 \text{ mg L}^{-1},$	•OH and	3
Fe ₃ O ₄ /bio	method	10 mg L ⁻¹	$[catalyst] = 0.2 \text{ g } \text{L}^{-1},$	O2	
char			pH = 5.44, 92.8 %		
			removal in 90 min		
FeMn@N	Thermal	Clothianidin	$[PMS] = 0.2 \text{ g } \text{L}^{-1},$	SO₄⁻∙, •OH	4
-C	decomposition	(CTD)	$[catalyst] = 0.1 \text{ g } \text{L}^{-1},$	and 1O_2	
		5 mg L ⁻¹	pH = 7, 100 %		
			removal in 90 min		
MnFe ₂ O ₄	Hydrothermal	Ofloxacin	$[H_2O_2] = 29.4 \text{ mM},$	•OH	5
@C-NH ₂	synthesis	30 mg L ⁻¹	$[catalyst] = 1.0 \text{ g } \text{L}^{-1},$		
			pH = 3.0, 63.8 %		
			removal in 180 min		

Table S2 Fe/Mn-based materials in the field of photocatalysis

FeMn/bio	One-step pyrolysis	Naphthalene	$[H_2O_2] = 100 \text{ mM};$	•OH and	6
char		30 mg L ⁻¹	$[catalyst] = 1.0 \text{ g } \text{L}^{-1},$	O2*-	
			pH = 5.6, 82.2 %		
			removal in 148 min		
FeMn@N	One-step pyrolysis	Acetamiprid	[PMS] = 6.5 mM,	SO₄⁻•, •OH	7
CNTs		7.8 µM	$[catalyst] = 0.1 \text{ g } \text{L}^{-1},$	and O ₂ •-	
			pH = 7, 99.3 %		
			removal in 90 min		
Mn-Fe	Coprecipitation	Acid Orange	$[PMS] = 0.2 \text{ g } \text{L}^{-1},$	SO₄ [−] •, •OH	8
layered		7 (AO7)	$[catalyst] = 0.2 \text{ g } \text{L}^{-1},$		
double		20 mg L ⁻¹	pH = 6.10, 97.6 %		
hydroxide			removal in 30 min		
γ-Fe ₂ O ₃ -	The simple	Norfloxacin	$[catalyst] = 0.2 \text{ g } \text{L}^{-1},$	h⁺, ∙OH, e⁻	9
MIL-53	ethylenediamine	(NOR)	92.8 % in 90 min		
(Fe)-GO	pyrolysis and in	10 mg L ⁻¹			
	situ hydrothermal				
	method				
Fe ₁ Mn ₁	Impregnation	CIP	$[Catalysts] = 0.1 \text{ g } \text{L}^{-1},$	•OH and	this
		20 mg L ⁻¹	pH = 7, T = 25 °C,	O_2 , h^+	work
			98.3 % removal in 30		
			min		

-

Number	Formula	m/z	Proposed structure
CIP	C ₁₇ H ₁₈ FN ₃ O ₃	331	
L1	C ₁₇ H ₁₆ FN ₃ O ₃	329	
L2	C ₁₇ H ₁₈ FN ₃ O ₃	347	
L3	C ₁₇ H ₁₆ FN ₃ O ₄	345	
L4	C ₁₇ H ₁₆ FN ₃ O ₅	361	
L5	C ₁₇ H ₁₆ FN ₃ O ₅	361	
L6	C ₁₃ H ₁₁ FN ₂ O ₃	262	H ₂ N F O O O O O H
L7	C ₁₀ H ₉ FN ₂ O ₃	224	H ₂ N F O OH

Table S3 The possible intermediates of CIP degradation in the Fe_1Mn_1 /light system

Fig. S1 XRD patterns of samples obtained with separate Fe-BTC or $Mn(NO_3)_2 \cdot 4H_2O$

precursors.

Fig. S2 FT-IR spectra of pure Fe/Mn, Fe_1Mn_2 , Fe_1Mn_1 , and Fe_2Mn_1 samples.

Fig. S3 Pore size distribution of synthetic materials FeMn catalysts.

Fig. S4 SEM analysis of the fabricated Fe_1Mn_1 catalyst related to Fig. 3d.

Fig. S5 HPLC chromatograms of CIP solution measured at different reaction time.

Fig. S6 Mass spectra and proposed structure of detected intermediate products.

Fig. S7 Magnetic detection of Fe_1Mn_1 nanocomposite.

Fig. S8 XPS (C 1s) spectra of the Fe₁Mn₁ catalyst.

Fig. S9 FT-IR analysis of the fresh and reacted Fe_1Mn_1 catalyst.

Fig. S10 g Value of the obtained catalysts before and after irradiation.

Fig. S11 UV-vis DRS spectra of FeMn samples.

Fig. S12. (a) Cyclic voltammetry (CV) curves and (b) electrochemical impedance spectroscopy (EIS) spectra of Fe_1Mn_1 , Fe_1Mn_2 , Fe_2Mn_1 and pure Fe.

References

- G. Chen, X. Zhang, Y. Gao, G. Zhu, Q. Cheng and X. Cheng, Novel magnetic MnO₂/MnFe₂O₄ nanocomposite as a heterogeneous catalyst for activation of peroxymonosulfate (PMS) toward oxidation of organic pollutants, *Sep. Purif. Technol.*, 2019, 213, 456-464.
- H. Lin, S. Li, B. Deng, W. Tan, R. Li, Y. Xu and H. Zhang, Degradation of bisphenol A by activating peroxymonosulfate with Mn_{0.6}Zn_{0.4}Fe₂O₄ fabricated from spent Zn-Mn alkaline batteries, *Chem. Eng. J.*, 2019, **364**, 541-551.
- L. Li, S. Liu, M. Cheng, C. Lai, G. Zeng, L. Qin, X. Liu, B. Li, W. Zhang, Y. Yi, M. Zhang, Y. Fu, M. Li and M. Long, Improving the Fenton-like catalytic performance of MnO_x-Fe₃O₄/biochar using reducing agents: A comparative study, *J. Hazard. Mater.*, 2021, **406**, 124333.
- P. Duan, Y. Qi, S. Feng, X. Peng, W. Wang, Y. Yue, Y. Shang, Y. Li, B. Gao and X. Xu, Enhanced degradation of clothianidin in peroxymonosulfate/catalyst system via core-shell FeMn @ N-C and phosphate surrounding, *Appl. Catal. B: Environ.*, 2020, 267, 118717.
- 5. H. Qin, H. Cheng, H. Li and Y. Wang, Degradation of ofloxacin, amoxicillin and tetracycline antibiotics using magnetic core-shell MnFe₂O₄@C-NH₂ as a heterogeneous Fenton catalyst, *Chem. Eng. J.*, 2020, **396**, 125304.
- L. Li, C. Lai, F. Huang, M. Cheng, G. Zeng, D. Huang, B. Li, S. Liu, M. Zhang, L. Qin, M. Li, J. He, Y. Zhang and L. Chen, Degradation of naphthalene with magnetic bio-char activate hydrogen peroxide: Synergism of biochar and Fe-Mn binary oxides, *Water Res.*, 2019, 160, 238-248.
- P. Duan, T. Ma, Y. Yue, Y. Li, X. Zhang, Y. Shang, B. Gao, Q. Zhang, Q. Yue and X. Xu, Fe/Mn nanoparticles encapsulated in nitrogen-doped carbon nanotubes as a peroxymonosulfate activator for acetamiprid degradation, *Environ. Sci.: Nano*, 2019, 6, 1799-1811.
- L. Hou, X. Li, Q. Yang, F. Chen, S. Wang, Y. Ma, Y. Wu, X. Zhu, X. Huang and D. Wang, Heterogeneous activation of peroxymonosulfate using Mn-Fe layered double hydroxide: Performance and mechanism for organic pollutant degradation, *Sci. Total Environ.*, 2019, 663, 453-464.
- Q. Wu, Y. Liu, H. Jing, H. Yu, Y. Lu, M. Huo and H. Huo, Peculiar synergetic effect of γ-Fe₂O₃ nanoparticles and graphene oxide on MIL-53 (Fe) for boosting photocatalysis, *Chem. Eng. J.*, 2020, **390**, 124615.