Supplementary material

Supplementary Methods

Computational methods. The distribution of the valence-electron density on the Fe-Mn-SiO₂ was investigated through DFT calculation. It was implemented in Vasp (the Vienna ab initio simulation package), with the potential to exchange and correlation Perdew, Burke and Ernzerhof (PBE) within the general apprxiation of the gradinte (GGA). A pseudopotentially engineered wave (PAW) was used to describe the main electrons. For all optimisation calculations, the energy and power conversion criteria are set at 10-5 eV, or 0.01 eV Å⁻¹. The energy limit was set to 450 eV, and a 3*3*1 K-point game center was selected to describe the Brilllouin zone. For Hubbard's correction, Ueff's value was set at 3.5 eV for Fe and Mn.

Samples	ples BET surface area Fe (at.%		at.%)	Mn (at.%)			
Sumples	(m^{2}/g)	Fe ³⁺	Fe ²⁺	Mn^{2+}	Mn^{3+}	Mn^{4+}	
Fe ₂ O ₃ /SiO ₂	540	38.5	61.5			_	
Mn_2O_3/SiO_2	526	—	—	15.0	71.6	13.4	
Fe-Mn-SiO ₂	617	73.4	26.6	9.6	56.9	33.5	

Table S1The structure of the catalysts.

	Deionized Water	Tap Water	Surface Water
рН	6.98	7.65	7.87
$UV_{254}(cm^{-1})$	0.004	0.022	0.178
TOC(mg/L)	-	-	3.53
Cl ⁻ (mg/L)	-	10.63	5.94
$SO_4^{2-}(mg/L)$	-	24.76	4.10
HCO ₃ -(mg/L)	-	2.52	5.71

Table S2Parameters of the obtained water samples.

Table	e S3
Analy	sis method of the pollutants

Analysis method of the pollutants.			
Pollutants	Mobile phase (v/v)		
Phenol	Water : methanol=60:40		
bisphenol A (BPA)	Water : methanol=30:70		
4-chlorophenol (4-CP)	Water : methanol=40:60		
Ibuprofen (IBP)	Water : acetonitrile=25:75		
Phenytoin (PHT)	Water : acetonitrile=40:60		

Flow rate of mobile phase using 1.0 mL/min for all experiments.

Figure S1 The structure of the Fe-Mn-SiO₂ catalyst. (a. SEM image; b. SEM-EDX image; c. TEM image; d. XRD spectrum)

Figure S2 The survey scan spectrum of the Fe-Mn-SiO₂ catalyst.

Figure S3 The SMT removal by the Fe-Mn-SiO₂/H₂O₂ system in the different water matrices. ([SMT]₀=20mg/L, [H₂O₂]₀=60mM, [Catalyst]=1g/L, T=25°C)

Figure S4 The kinetics curves for the SMT degradation in the Fenton-like reaction over the Fe-Mn-SiO₂ catalyst under the different operating conditions. ((a) pH value: $(SMT)_0=20mg/L$, $[H_2O_2]_0=60mM$, [Catalyst]=1g/L, $T=25^{\circ}C$; (b) H_2O_2 dosage: $[SMT]_0=20mg/L$, pH=7.0, [Catalyst]=1g/L, T=25°C; (c) SMT concentration: pH=7.0, $[H_2O_2]_0=60mM$, [Catalyst]=1g/L, T=25°C; (d) reaction temperature: $[SMT]_0=20mg/L$, pH=7.0, $[H_2O_2]_0=60mM$, [Catalyst]=1g/L, T=25°C; (d) reaction temperature: $[SMT]_0=20mg/L$, pH=7.0, $[H_2O_2]_0=60mM$, [Catalyst]=1g/L).

Figure S5 The catalytic stability of the Fe-Mn-SiO₂ catalyst in the Fenton-like reaction for the SMT degradation. ([SMT]₀=20mg/L, pH=7.0, [H₂O₂]₀=60mM, [Catalyst]=1g/L, T=25°C)

Figure S6 The SMT removal in the Fenton-like reaction over the fresh Fe-Mn-SiO₂ catalyst and the used Fe-Mn-SiO₂ after calcination. ($[SMT]_0=20mg/L$, pH=7.0, $[H_2O_2]_0=60mM$, [Catalyst]=1g/L, T=25°C).

Figure S7 FTIR spectrum of Fe_2O_3/SiO_2 and $Fe-Mn-SiO_2$ catalysts.