Environmental Science: Nano

Supporting Information

Porous g-C3N4/TiO2 foam photocatalytic filter for treating

NO indoor gas

Mingwen Xiong, ‡*a Ying Tao, ‡b Zhishu Zhao, c Qiong Zhu, b Xiaoqi Jin, a Shengqiang Zhang, a

Ming Chen^e and Guisheng Li *bcd

^aSchool of Materials and Chemical Engineering, Bengbu University, Bengbu 233030, PR China, Email: xiongmingwen@163.com

^bSchool of Environmental and Geographical Sciences, Wetland ecosystem observation and research field station, Shanghai Normal University, Shanghai, 200234, P. R. China.

^cThe Education Ministry Key Lab of Resource Chemistry, Shanghai Key Laboratory of Rare Earth Functional Materials, Shanghai, 200234, P. R. China

^d School of Materials Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China

^e School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225002, P. R. China

‡These authors have contributed equally.

*Corresponding author: Prof. Mingwen Xiong, Prof. Guisheng Li

E-mail address: xiongmingwen@163.com, liguisheng@shnu.edu.cn

Tel: +86-021-64321673

Supporting Information consists of 5 pages containing 6 figures.

CONTENTS

CONTENTS

Fig. S1. SEM images of TiO ₂ foamS3
Fig. S2. SEM images of TiO ₂ foam after magnificationS3
Fig. S3. SEM images of TiO ₂ foam and 1.0 -C ₃ N ₄ /TiO ₂ foam after magnification. S4
Fig. S4. Infrared spectra and Raman spectra of as-formed photocatalystsS4
Fig. S5. Dependence of ln(C/C ₀) on irradiation time of <i>g</i> -C ₃ N ₄ , TiO ₂ foam, 1.0-
C ₃ N ₄ /TiO ₂ foam under visible-light ($\lambda \ge 400 \text{ nm}$) irradiationS4
Fig. S6. The inhibition ratio of KI, TBA, and PBQ as scavengers on the
photocatalytic NO oxidation process by using 1.0-C ₃ N ₄ /TiO ₂ foam as
photocatalyst

Fig. S1. SEM images of TiO_2 foam.

Fig. S2. SEM images of TiO_2 foam after magnification.

Fig. S3. SEM images of TiO_2 foam and $1.0-C_3N_4/TiO_2$ foam after magnification.

Fig. S4. (a, b) Infrared spectra and (c) Raman spectra of as-formed photocatalysts.

Fig. S5. Dependence of $\ln(C/C_0)$ on irradiation time of g-C₃N₄, TiO₂ foam, 1.0-C₃N₄/TiO₂ foam under visible-light ($\lambda \ge 400 \text{ nm}$) irradiation.

Fig. S6. The inhibition ratio of KI, TBA, and PBQ as scavengers on the photocatalytic NO oxidation process by using $1.0-C_3N_4/TiO_2$ foam as photocatalyst.