## One-step fabrication of bimetallic CuCoOS as an efficient catalyst for

## Cr(VI) reduction

Xueqing Li, Dongyun Chen, \* Najun Li, Qingfeng Xu, Hua Li, Jinghui He, and Jianmei

Lu\*,

College of Chemistry, Chemical Engineering and Materials Science, Collaborative

Innovation Center of Suzhou Nano Science and Technology, Soochow University,

Suzhou, Jiangsu 215123, China.

\*Corresponding author.

E-mail addresses: dychen@suda.edu.cn; lujm@suda.edu.cn

## **Supporting Information**



**Fig. S1** Preparation scheme of CuCoOS catalyst via co-precipitation method followed by oil bath.



Fig. S2 EDS mapping images of CuCoOS-1/3 and corresponding elements.



Fig. S3 EDX analysis of CuCoOS-1/3.



Fig. S4 XPS survey of CuCoOS-1/3.



**Fig. S5** Images of the Cr(VI) solution at different stages. (A) initial solution; (B) treated solution after precipitate settling; (C) initial solution after NaOH treatment; (D) treated solution after NaOH treatment.



Fig. S6 Zeta potential of CuOS and CuCoOS.



Fig. S7 The UV-vis spectra changes of Cr(VI) solution over CuCoOS-1/3.



Fig. S8 XPS spectra of CuCoOS-1/3 before and after reaction, (a) Cu 2p, (b) Co 2p, (c)

O 1s and (d) S 2p orbitals.

Fig. S9 EDS mapping images of CuCoOS-1/3 after reaction and corresponding elements.

| Sample     | Surface area                      | Pore volume                        | Pore diameter |
|------------|-----------------------------------|------------------------------------|---------------|
|            | (m <sup>2</sup> g <sup>-1</sup> ) | (cm <sup>3</sup> g <sup>-1</sup> ) | (nm)          |
| CuOS       | 43.5014                           | 0.327870                           | 29.9072       |
| CuCoOS-1/6 | 61.8502                           | 0.277066                           | 17.0456       |
| CuCoOS-1/3 | 68.7751                           | 0.354502                           | 21.2740       |
| CuCoOS-2/3 | 31.4839                           | 0.200479                           | 20.7272       |

Table. S1 Special surface area, pore volume and pore diameter of the prepared samples.

 Table. S2 Data comparison on Cr(VI) reduction over different catalysts.

| Catalyst                                                                 | Cr(VI)   | Experimental details                                                                               | Time  | Degradation | Ref |
|--------------------------------------------------------------------------|----------|----------------------------------------------------------------------------------------------------|-------|-------------|-----|
|                                                                          | solution |                                                                                                    | (min) | rate (%)    |     |
| p-nZVI                                                                   | 5 mg/L   | Catalyst=0.2 g/L<br>A shaker with a speed<br>of 200 rmp                                            | 180   | 100         | [1] |
| CuAl <sub>2</sub> O <sub>4</sub> /Bi <sub>2</sub> MoO <sub>6</sub>       | 10 mg/L  | Catalyst=1.0 g/L<br>A 150W Xe lamp<br>$(\lambda > 420 \text{ nm})$                                 | 149   | 100         | [2] |
| Au/BiVO <sub>4</sub>                                                     | 10 mg/L  | Catalyst=0.5 g/L<br>An ultrasonic cleaner<br>with a frequency of<br>40 kHz and a power of<br>120 W | 120   | 80          | [3] |
| AgI/BiVO4                                                                | 15 mg/L  | Catalyst=0.4 g/L<br>A 500W Xe lamp<br>$(\lambda > 420 \text{ nm})$                                 | 100   | 70          | [4] |
| N-TiO <sub>2</sub> /CNO <sub>NV</sub>                                    | 15 mg/L  | Catalyst=1.0 g/L<br>A 300 W xenon lamp ( $\lambda$<br>> 420 nm)                                    | 120   | 89.5        | [5] |
| CeO <sub>2</sub> /Bi <sub>2</sub> MoO <sub>6</sub>                       | 10 mg/L  | Catalyst=1.0 g/L<br>A 5W White LED<br>(λ > 400 nm)                                                 | 90    | 97          | [6] |
| Bi.333(Bi <sub>6</sub> S <sub>9</sub> )Br/Bi <sub>2</sub> S <sub>3</sub> | 5 mg/L   | Catalyst=0.2 g/L<br>A 300W Xe lamp<br>$(\lambda > 420 \text{ nm})$                                 | 60    | 98          | [7] |
| 110-BiOBr                                                                | 10 mg/L  | Catalyst=0.4 g/L<br>A 500W Xe arc lamp ( $\lambda$<br>> 420 nm)                                    | 120   | 100         | [8] |
| Zn-doped AgFeO <sub>2</sub>                                              | 10 mg/L  | Catalyst=0.5 g/L<br>A single wavelength                                                            | 90    | 90.8        | [9] |

|                               |         | lamp ( $\lambda > 420 \text{ nm}$ ) |     |       |      |
|-------------------------------|---------|-------------------------------------|-----|-------|------|
| NH <sub>2</sub> -MIL-         | 10 mg/L | Catalyst=1.4 g/L                    | 180 | 93.28 | [10] |
| 125(Ti)@Bi2MoO6               |         | A 300W Xe lamp                      |     |       |      |
|                               |         | $(\lambda > 420 \text{ nm})$        |     |       |      |
| NH <sub>2</sub> -UiO-66/BiOBr | 10 mg/L | Catalyst=0.4 g/L                    | 360 | 88    | [11] |
|                               |         | A 250W Xe lamp                      |     |       |      |
|                               |         | $(\lambda > 400 \text{ nm})$        |     |       |      |
| CuCoOS                        | 50 mg/L | Catalyst=0.6 g/L                    | 20  | 100   | This |
|                               |         | In the dark                         |     |       | work |

## Reference

[1] M. Li, Y. Mu, H. Shang, C. Mao, S. Cao, Z. Ai, L. Zhang, Phosphate modification enables high efficiency and electron selectivity of nZVI toward Cr(VI) removal, Appl. Catal. B: Environ., 263 (2020), 118364.

[2] J. Zhang, C. Shao, X. Li, J. Xin, R. Tao, Y. Liu, Assembling n-Bi<sub>2</sub>MoO<sub>6</sub> nanosheets on electrospun p-CuAl<sub>2</sub>O<sub>4</sub> hollow nanofibers: enhanced photocatalytic activity based on highly efficient charge separation and transfer, ACS Sustain. Chem. Eng. 6 (2018) 10714-10723.

[3] Y. Wei, Y. Zhang, W. Geng, H. Su, M. Long, Efficient bifunctional piezocatalysis of Au/BiVO<sub>4</sub> for simultaneous removal of 4-chlorophenol and Cr(VI) in water, Appl. Catal. B: Environ., 259 (2019), 118084.

[4] W. Zhao, J. Li, B. Dai, Z. Cheng, J. Xu, K. Ma, L. Zhang, N. Sheng, G. Mao, H. Wu, K. Wei, D.Y.C. Leung, Simultaneous removal of tetracycline and Cr(VI) by a novel three-dimensional AgI/BiVO<sub>4</sub> p-n junction photocatalyst and insight into the photocatalytic mechanism, Chem. Eng. J. 369 (2019) 716-725.

[5] Y. Wang, L. Rao, P. Wang, Z. Shi, L. Zhang, Photocatalytic activity of N-TiO<sub>2</sub>/O-doped N vacancy  $g-C_3N_4$  and the intermediates toxicity evaluation under tetracycline hydrochloride and Cr(VI) coexistence environment, Appl. Catal. B: Environ., 262 (2020), 118308.

[6] G. Yang, Y. Liang, K. Li, J. Yang, R. Xu and X. Xie, Construction of  $Ce^{3+}$  doped  $CeO_2/Bi_2MoO_6$  heterojunction with a mutual component activation system for highly enhancing visible-light photocatalytic activity for removal of TC or Cr (VI), Inorg. Chem. Front. 6 (2019) 1507-1517.

[7] L. Ai, L. Wang, M. Xu, S. Zhang, N. Guo, D. Jia, L. Jia, Defective Bi<sub>.333</sub>(Bi<sub>6</sub>S<sub>9</sub>)Br/Bi<sub>2</sub>S<sub>3</sub> heterostructure nanorods: Boosting the activity for efficient visible-light photocatalytic Cr(VI) reduction, Appl. Catal. B: Environ., 284 (2021),

119730.

[8] T. Li, Y. Gao, L. Zhang, X. Xing, X. Huang, F. Li, Y. Jin, C. Hu, Enhanced Cr(VI) reduction by direct transfer of photo-generated electrons to Cr 3d orbitals in  $CrO_4^{2}$ -intercalated BiOBr with exposed (110) facets, Appl. Catal. B: Environ., 277 (2020), 119065.

[9] C. Li, Y. Guo, D. Tang, Y. Guo, G. Wang, H. Jiang, J. Li, Optimizing electron structure of Zn–doped AgFeO<sub>2</sub> with abundant oxygen vacancies to boost photocatalytic activity for Cr(VI) reduction and organic pollutants decomposition: DFT insights and Experimental, Chem. Eng. J., 3 (2021), 128515.

[10] S. Zhang, M. Du, J. Kuang, Z. Xing, Z. Li, K. Pan, Q. Zhu, W. Zhou, Surfacedefect-rich mesoporous NH<sub>2</sub>-MIL-125 (Ti)@Bi<sub>2</sub>MoO<sub>6</sub> core-shell heterojunction with improved charge separation and enhanced visible-light-driven photocatalytic performance, J. Colloid Interface Sci. 554 (2019) 324-334.

[11] Q. Hu, Y. Chen, M. Li, Y. Zhang, B. Wang, Y. Zhao, J. Xia, S. Yin, H. Li, Construction of NH<sub>2</sub>-UiO-66/BiOBr composites with boosted photocatalytic activity for the removal of contaminants, Colloids Surf. A Physicochem. Eng. Asp. 579 (2019), 123625.