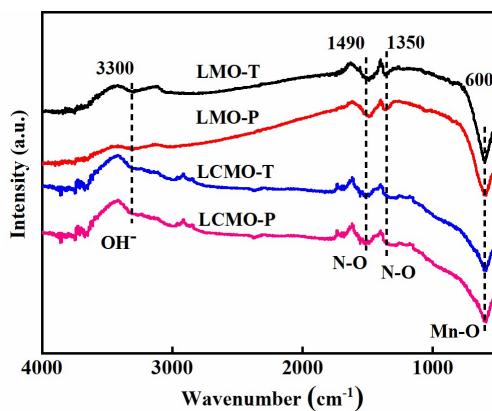


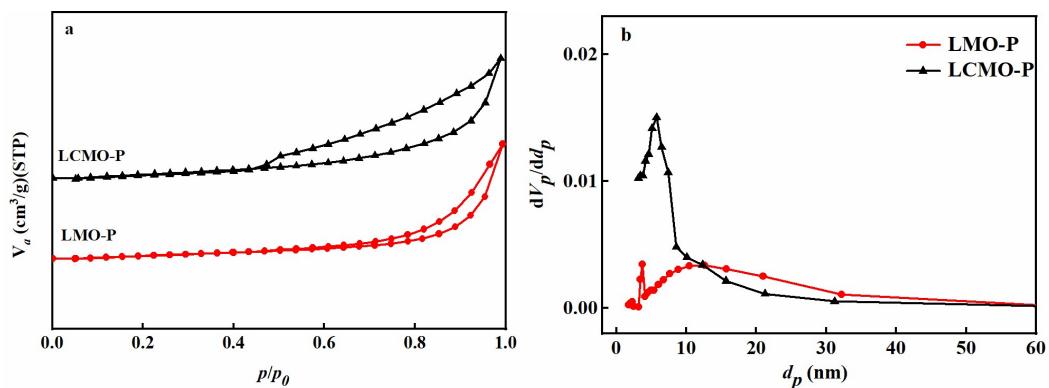
Supporting Information

Plasma-induced construction of defect-enriched perovskite oxides for catalytic methane combustion

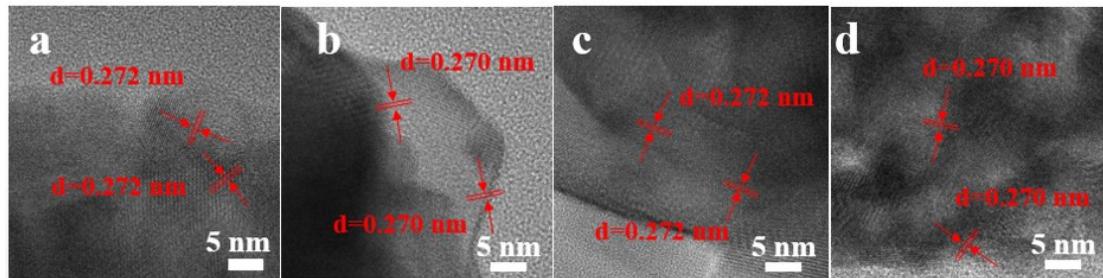
Qingqing Tian ^a, Zhicheng Wang ^a, Minghao Yuan ^a, Shuai Zhao ^a, Huawei Chen ^a, Lei Li ^{b,}, Mifen Cui ^a, Xu Qiao ^a, Zhaoyang Fei ^{a,*}*

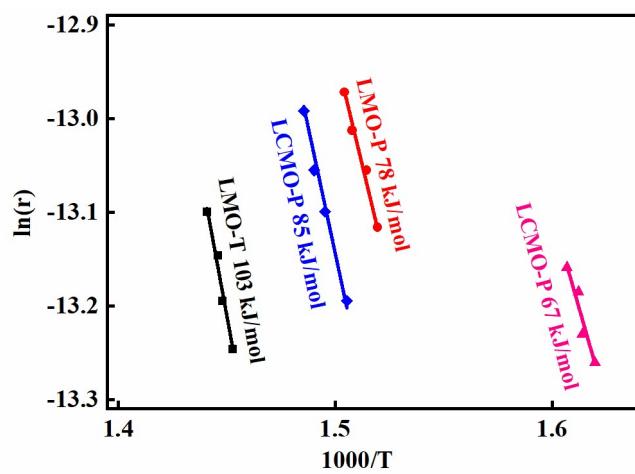

a State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing, 211816, PR China

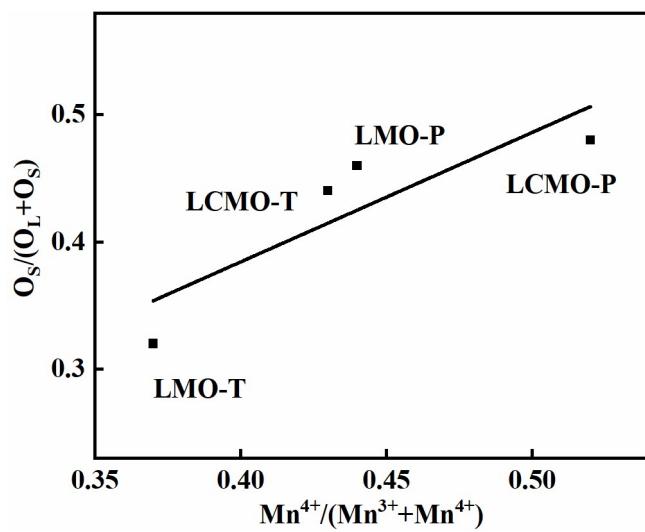
b School of Chemistry and Chemical Engineering, Yancheng Institute of Technology, Yancheng, 224051, PR China

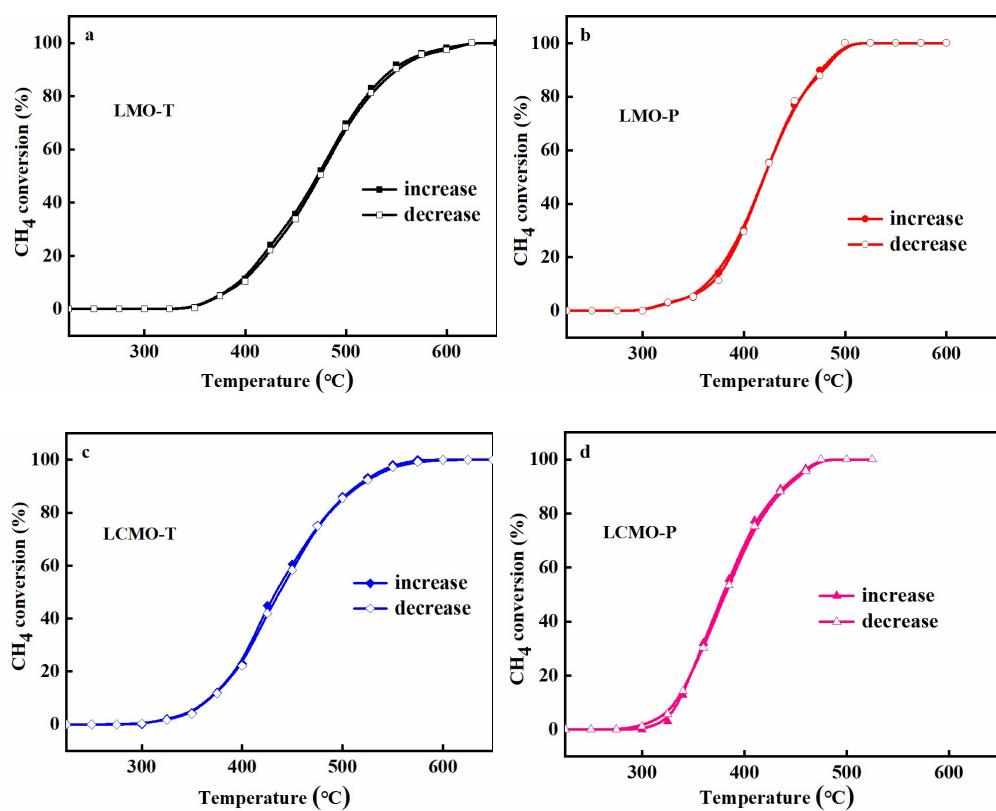

***Corresponding Authors**

E-mail: lee_ycit@yahoo.com


E-mail: zhaoyangfei@njtech.edu.cn


Fig.S1 FTIR spectra of all catalysts.


Fig.S2 (a) N_2 adsorption-desorption isotherms and (b) pore-size distributions of LMO-P and LCMO-P catalysts.


Fig.S3 HRTEM images of (a) LMO-T, (b) LCMO-T, (c) LMO-P and (d) LCMO-P catalysts.

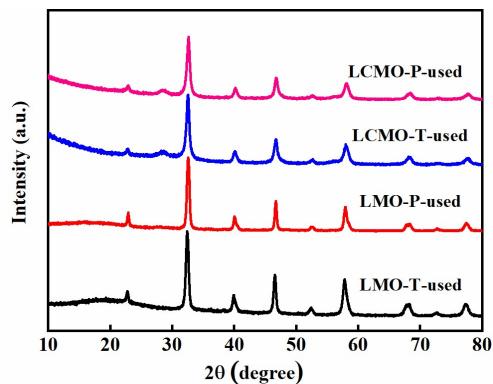

Fig.S4 Arrhenius plots for CH_4 combustion over all catalysts.

Fig.S5 Relationship among the $\text{Mn}^{4+}/(\text{Mn}^{3+} + \text{Mn}^{4+})$ and $\text{O}_s/(\text{O}_s + \text{O}_L)$ of all catalysts.

Fig.S6 Cycle performance tests of all catalysts.

Fig.S7 XRD patterns of all used catalysts.

Tab.S1 Detailed data of pore volume (V_p), average pore size (D_p), ICP results and surface atomic concentration of all catalysts

Catalysts	V_p^a ($\text{cm}^3 \cdot \text{g}^{-1}$)	D_p^a (nm)	Ce content ^b (wt.%)	Surface atomic concentration (%)		
				Mn	La	Ce
LMO-T	-	-	-	16.1	22.0	-
LMO-P	0.12	27.9	-	17.0	23.2	-
LCMO-T	-	-	11.7	17.6	16.2	3.2
LCMO-P	0.23	11.0	11.2	19.5	16.6	2.1

^a The data were calculated by BJH method according to the desorption branch.

^b The data were calculated by ICP analysis.

Tab.S2 Comparison of CH_4 catalytic oxidation over other catalysts reported in the literature.

Catalysts	Reaction conditions	T_{50}	T_{90}	Reaction rate	Ref.
		(°C)	(°C)	($\mu\text{mol} \cdot \text{g}^{-1} \cdot \text{s}^{-1}$) ^a	
LCMO-P	2.5 vol.% CH_4 , 30000 h^{-1}	380	440	1.47	This work
$\text{LaMn}_{0.8}\text{Mg}_{0.2}\text{O}_3$	1 vol.% CH_4 , 30000 h^{-1}	450	525	0.47	[1]
LaMnO_3	3 vol.% CH_4 , 30000 h^{-1}	480	570	1.31	[2]
$\text{La}_{1-x}\text{FeO}_{3-\delta}$	0.5 vol.% CH_4 , 240000 h^{-1}	500	625	0.75	[3]
NiO/LaNiO_3	10 vol.% CH_4 , 36000 h^{-1}	480	575	0.79	[4]
$\text{La}(\text{Mn, Fe})\text{O}_{3+\lambda}$	1 vol.% CH_4 , 15000 h^{-1}	439	493	0.32	[5]

^a Reaction rate calculated from the active test at 350 °C.

References:

- [1] Zhu L, Lu G, Wang Y, et al. Effects of preparation methods on the catalytic performance of $\text{LaMn}_{0.8}\text{Mg}_{0.2}\text{O}_3$ perovskite for methane combustion. Chinese Journal of Catalysis, 2010, 31(8):1006-1012.
- [2] Guo G, Lian K, Wang L, et al. High specific surface area LaMO_3 ($\text{M} = \text{Co, Mn}$) hollow spheres: synthesis, characterization and catalytic properties in methane combustion. RSC Advances, 2014, 4(102):58699-58707.
- [3] Faye J, Baylet A, Trentesaux M, et al. Influence of lanthanum stoichiometry in $\text{La}_{1-x}\text{FeO}_{3-\delta}$ perovskites on their structure and catalytic performance in CH_4 total oxidation. Applied Catalysis B-Environmental, 2012, 126:134-143.
- [4] Nie L, Wang J, Tan Q. In-situ preparation of macro/mesoporous NiO/LaNiO_3 perovskite composite with enhanced methane combustion performance. Catalysis Communications, 2017, 97:1-4.
- [5] Miao F, Wang F, Mao D, et al. Effect of different reaction conditions on catalytic activity of $\text{La}(\text{Mn, Fe})\text{O}_{3+\lambda}$ catalyst for methane combustion. Materials Research Express, 2019, 6(5) :15.