Supporting Information for

Properties and reactivity of sulfidized nanoscale zero-valent iron prepared with different borohydride amounts

Zhen Caoa, Hao Lib, Shuangyu Zhanga, Yunxuan Hua, Jiang Xua,*, Xinhua Xua,*

aCollege of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China

bDepartment of Physics, Technical University of Denmark, 2800 Kongens Lyngby, Denmark

* Corresponding author: E-mail address: xuxinhua@zju.edu.cn (X. Xu)

xujiang6@zju.edu.cn (J. Xu)
Figure S1 (a) Fe, (b) O, (c) S maps, and (d) EDX spectra of SNZVI synthesized with a dosed NaBH₄/Fe molar ratio of 1.5.
Figure S2 (a) Fe, (b) O, (c) S maps, and (d) EDX spectra of SNZVI synthesized with a dosed NaBH$_4$/Fe molar ratio of 3.
Figure S3 (a) Fe, (b) O, (c) S maps, and (d) EDX spectra of SNZVI synthesized with a dosed NaBH₄/Fe molar ratio of 5.
Figure S4 Specific surface area of NZVI and SNZVI
Figure S5 (a, b) Fe 2p XPS spectrum and (c, d) Fe speciation of NZVI and SNZVI
Figure S6 (a) S 2p XPS spectrum and (b) $[S^{2−}/S_2^{2−}]_{\text{surface}}$ of SNZVI.
Figure S7 (a) XRD spectrum of NZVI and SNZVI and (b) The shift of SNZVI at Fe(110) lattice plane in XRD spectrum (Position of Fe(110) plane for NZVI was 2θ = 44.98°)
Figure S8 (a) Fe0 content and (b) Yield of NZVI
Figure S9 (a) H$_2$ evolution and (b) Surface area-normalized zero-order kinetics rate of H$_2$ evolution (k_{SA, H_2}, H$_2$ evolution of NZVI in first 5 days was calculated for comparison), (c) DFT-calculated H$_2$O adsorption energy and (d) Estimated longevity of NZVI and SNZVI (The longevity was estimated when the accumulated H$_2$ reached to 100% of actual Fe0 content). (T=298 K, initial pH=7.0, 1.0 g L$^{-1}$ NZVI or SNZVI).
Figure S10 (a) Removal of TCE, (b) Pseudo first-order kinetics rate of TCE removal \(k_{\text{obs, TCE}} \) and (c) Surface area normalized rates of TCE removal \(k_{\text{SA, TCE}} \) by NZVI and SNZVI. Correlations of \(k_{\text{SA, TCE}} \) to (d) \([\text{S/Fe}]_{\text{particle}} \) and (e) \([\text{S/Fe}]_{\text{surface}} \). (T=298 K, initial pH=7.0, 1.0 g L\(^{-1}\) NZVI or SNZVI, 70 μM TCE)
Figure S11 Electron efficiency of NZVI and SNZVI for TCE removal.
Figure S12 Main products fraction of TCE by NZVI and SNZVI synthesized with NaBH₄/Fe ratio of (a, b) 1.5, (c, d) 3, (e, f) 5.
Figure S13 Surface area-normalized pseudo first-order kinetics rate of C_2H_2 removal ($k_{\text{SA, C}_2\text{H}_2}$).