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Table S1: The locations of surface water (SW) sites and their descriptions.

Abbr. Site GPS Location Type of
landscape

Description

SW1 Rehbach 49° 21′ 20″ N
8° 9′ 19″ E

urban Is tributary of the Speyerbach river which flows through the Winziger 
Wassergescheid in Neustadt Weinstrasse.

SW2 Speyerbach 49°19'04.8"N
8°26'49.5"E

urban The Speyerbach is a left tributary of the Rhine river and flows through the 
southern palatinate forest as splits into smaller water courses before emptying 
out into the Rhine.

SW3 Bischofsweiher 49°20'40.4"N
8°05'18.2"E

forest Bischofsweier is an artificial lake dammed from inflows from the 
Kaltenbrunnertalbach stream and serves as a recreational fishing lake.

SW4 Kaltenbrunnertal
-bach

49°20'40.4"N
8°05'18.2"E

forest Kaltenbrunnertalbach is a stream that flows from the northern summit of 
Hüttenhohl and maintains its course through the southern palatinate forest 
before emptying into Rehbach.

SW5 Modenbach 49°16'12.4"N
8°10'58.4'' E

agricultural Modenbach is a stream, just under 30 kilometers long, and a right-hand tributary 
of the Speyerbach.

SW6 Neuhofener
Altrhein

49°25'41.7"N
8°27'18.3"E

agricultural/
urban

This lake is primarily reserved for nature conservation with the northern beach of 
the lake serving as a shallow bathing area open to the public while fishing is 
allowed in other sections. There is a constant danger of mass development of 
cyanobacteria.

SW7 Kiefweiher 49°26'25.2"N
8°28'13.6"E

agricultural/
urban

Kiefweiher differs from all other lakes in the city as it is directly connected to the 
Rhine. This has a special effect on Rhine flood plains when the Kiefweiher 
overflows its banks due to outflows form the Rhine river.

SW8 Rhein 49°19'08.2"N
8°26'59.8"E

urban The Rhine is a major European river, with its source in Switzerland. Flowing 
through Germany’s Rhineland and the Netherlands to eventually empty into the 
North Sea.

SW9 Schwanenweiher 49°11'47.7"N
8°07'18.5"E

urban It is an artificial pond located in the heart of Landau. The bank of the pond serves 
as a spot for recreational activities while the pond serves as a habitat for swans 
and fish. On Monday, July 1st, 2019, the temperature in pond increased to over 
28 ᵒC resulting in the reduction of biological oxygen demand driving most of the 
fish to the surface (www.pfalz-express.de).

SW10 Hainbach 49°14'09.9"N
8°04'25.3"E

Forest/agric
ultural

It is a tributary of the Speyerbach that runs through palatinate forest and serves 
as a natural irrigation for the vineyards and agricultural fields.

http://www.pfalz-express.de/
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Table S2: The average of surface water parameters between the first and last day of exposure for spring and summer samples.1

Temp. EC DOC F- Cl- NO3
- SO4

2- PO4
3- Na+ K+ Ca2+ Mg2+

Site pH (°C) (µS/c
m) (mg/L) (mg/L) (mg/L) (mg/L) (mg/L) (mg/L)2 (mg/L) (mg/L) (mg/L) (mg/L)

Flu. 
fulvic/
humic 
acid3

UV 
254 

/210

Flu. 
Protein4

SW1-Sp. 7.9 11.2 147.5 2.3 0.04 10.6 4 14.4 0.2 9.1 4 14.9 4.1 0.9 0.03 1
SW1-Su. 7.8 13.8 154.0 8.8 0.01 6.0 1.9 7.3 0.2 8.4 3.4 15.7 3.3 0.6 0.04 0
SW2-Sp. 8 13.1 347.5 3.8 0.04 25.3 6.7 27.8 0.2 19.5 6.6 24.9 5.8 1.0 0.05 1
SW2-Su. 7.6 15.3 323.5 4.5 0.03 8.8 2.7 6.8 0.2 21.2 6.4 20.3 3.7 0.7 0.05 1
SW3-Sp. 7.4 11.1 122.0 3.0 0.05 9.2 4.3 14.2 <LOD 5.9 2.5 10.4 4.6 0.7 0.11 0
SW3-Su. 6.8 14.5 79.0 10.5 0.05 3.3 0.5 4.1 <LOD 2.3 1.2 5.3 1.1 0.5 0.29 0
SW4-Sp. 7.4 11.2 123.5 3.9 0.05 12.0 2.8 13.6 <LOD 5.7 2.7 9.4 4.0 0.6 0.10 0
SW4-Su. 6.8 14.6 84.0 6.2 0.07 3.1 0.4 3.5 <LOD 5 3 9.9 3.2 0.5 0.30 0
SW5-Sp. 8.1 11.3 357.0 3.1 0.07 11.6 5.2 21.6 <LOD 8.1 2.9 42.8 12.8 0.8 0.04 1
SW5-Su. 7.8 16.3 444.5 11.6 0.08 9.3 2.8 14.1 <LOD 6 1.8 42.8 9.4 0.5 0.05 0
SW6-Sp. 7.9 16.4 748.0 9.7 0.06 49.0 2.8 180 <LOD 24.3 6.7 86.5 21.3 0.7 0.07 1
SW6-Su. 7.9 21.6 817.0 13.6 0.08 20.1 0.3 40.4 <LOD 24.9 7 102.1 20.1 0.5 0.29 1
SW7-Sp. 8.4 16.2 338.0 3.5 0.07 20.3 4.3 27.6 <LOD 13.6 2.5 46.7 8.6 0.8 0.06 1
SW8-Sp. 8.2 13.6 349.5 2.9 0.07 19.6 5.4 25.8 <LOD 13.8 2.4 48.8 8.5 0.8 0.05 1
SW8-Su. 7.8 19.7 329.0 12.5 0.08 4.6 1.4 7.5 <LOD 10.5 2.1 34.5 6.9 0.5 0.05 0
SW9-Sp. 9.1 14.8 495.0 17.1 0.07 59.5 1.6 46.2 <LOD 38.9 10 30.5 11.9 0.9 0.19 1
SW9-Su. 8.6 23.4 852.5 19.3 0.09 133.2 1.8 30.8 0.2 62.3 15.5 63.1 18.8 0.6 0.17 1

SW10-Su. 7.5 16.4 119.5 5.6 0.07 4.1 1.7 6.6 0.1 3.5 2.4 16.2 3.8 1.0 0.15 0

1 Sp. = spring (18.04.2019-22.04.2019) and Su. = summer (12.09.2019-16.09.2019). The data for SW10-Sp. and SW7-Su. are not available 
because the samples could not be retrieved after exposure.
2 LOD (limit of detection) of phosphate = 0.08 mg/L.
3 Fluorescence intensity ratio of fulvic/humic acid (fulvic: fluorescence intensity measured at Ex/Em ~ 340/430 and humic: fluorescence 
intensity measured at Ex/Em ~ 250/430).
4 Tryptophane-like proteins in SWs were shown as “Flu. Protein” (on fluorescence map: Ex/Em ~ 270/330). Presence of “Fluo. Protein” = 
1, Absence of “Flu. Protein” = 0.



4

Table S2-1: Calculations1 of saturation index (SI) based on the parameters of Table S2.

Ionic Strength Saturation index.2

(calcite)3Site

SW1-Sp. 2.06e-03 -0.944
SW1-Su. 1.74e-03 -1.083
SW2-Sp. 3.47e-03 -0.532
SW2-Su. 2.26e-03 -1.366
SW3-Sp. 1.58e-03 -2.089
SW3-Su. 5.74e-04 -3.512
SW4-Sp. 1.49e-03 -2.130
SW4-Su. 1.04e-03 -3.254
SW5-Sp. 4.38e-03 -0.124
SW5-Su. 3.64e-03 -0.659
SW6-Sp. 9.97e-03 -0.268
SW6-Su. 8.33e-03 -0.093
SW7-Sp. 4.95e-03 0.545
SW8-Sp. 4.72e-03 0.149
SW8-Su. 2.94e-03 -0.708
SW9-Sp. 1.03e-02 1.553
SW9-Su. 9.73e-03 1.076

SW10-Su. 1.53e-03 -1.638

1 Calculations were performed using “visual MINTEQ 3.1” considering the atmospheric pressure of 0.00038 atm for CO2.
2 Saturation Index (SI) = log IAP – log Ksp (IAP: Ion activity product and Ksp: Solubility Product)
   SI > 0: oversaturation (precipitation)
   SI = 0: apparent equilibrium
   SI < 0: undersaturation
3 Calcite: CaCO3
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Figure S1: Density plots of the physiochemical parameters of the surface waters.
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Quality control of the dialysis bags in different surface waters Using NMR relaxometry

Membrane fouling reduces the permeability of the dialysis bag due to pore obstruction by biotic or abiotic materials in surface waters. In 

our previous study, 1H-NMR relaxometry was used as a simple and efficient method for in situ estimation of a pore size distribution averaged 

over the whole membrane; it was shown that the pore system of dialysis bags in surface water (Queich river) was not clogged after 7 days 

of exposure.1 The same method was used here to investigate whether the dialysis bags remain efficient (the pores are not clogged) under 

exposing them to different surface waters with contrasting parameters. The T2 distributions of dialysis membrane samples depict two 

distinguished T2 peaks representing the hierarchical pore structure in dialysis bags (Figure S2). The larger T2 (around 2000 – 3000 ms) 

distribution is the result of a mixed contribution between the water molecules absorbed on the surface of the membrane and free state while 

the smaller T2 (150 – 200 ms) indicates water trapped in small pores. Clogged dialysis bags obtained after drying show a T2 distribution 

mode around 70 ms.1 Since all dialysis bags containing n-TiO2 exposed to SWs during spring showed a T2-distribution mode larger than 

100 ms, we can assume that clogging did not occur in the tested surface waters.

Furthermore, Tukey test and box plots of T2 (Figure S3) showed that the T2-distributions modes of SW6 and SW9 varied significantly from 

each other (p-value = 0.012), but not with the other sites. Interestingly, SW6 and SW9, despite being relatively similar in terms of water 

parameters, show contrasting behaviours towards dialysis membrane. Hence, only SW with extreme composition could result in significant 

differences in the pore size distribution of the dialysis bags; however, this effect is not relevant for most of the SWs and is not expected to 

affect the composition of the natural coating. 
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Figure S2: T2 distribution comparison of dialysis bags containing n-TiO2 exposed to surface waters SW1-SW9 during spring obtained 
using 1H-NMR relaxometry. Sample SW10 was not retrieved.

Figure S3: Box plots showing variances in T2-distribution mode (small pores) within each six replicates in spring experiment. Sample 

SW10 was not retrieved. Asterisks show the samples with significant difference based on a Tukey test. 
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Figure S4: Representative ATR-FTIR spectra of the SW3, SW4, SW8, and SW9 in summer experiments. Black spectra: n-TiO2, Red 
spectra: n-TiO2/SWs, Blue spectra: n-TiO2/SWs rinsed with pure water.
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Table S3: Presence or absence of new ATR-FTIR bands on n-TiO2 after exposure to SWs (n-TiO2/SWs).

Site Season IR-wide1375-1398 IR-sharp-1430 IR-1500
Spring X - -SW1

Summer - - -
SW2 Spring X - X

Summer X - -
SW3 Spring - - -

Summer - - -
SW4 Spring - - -

Summer - - -
SW5 Spring X - X

Summer X X X
SW6 Spring X - X

Summer X X X
SW7 Spring X X X

Summer NA NA NA
SW8 Spring X X X

Summer X X X
SW9 Spring X X X

Summer X X X
SW10 Spring NA NA NA

Summer X - -
X: presence of assigned ATR-FTIR band.

NA: lost sample/ samples could not be retrieved after exposure.
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Figure S5: ATR-FTIR spectra of TiO2/SW8 calcined stepwise from room temperature to 900 °C.
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Figure S6: TGA curves for washed n-TiO2 (control sample) and n-TiO2/SW8.
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Table S4: Atomic percentage of the elements present on-TiO2/SWs samples in summer experiment obtained from XPS analysis.

Photoelectron 
line

Binding 
Energy 

(eV)

SW1
Atomic 

%

SW2
Atomic 

%

SW3 
Atomic 

%

SW4 
Atomic 

%

SW5 
Atomic 

%

SW6 
Atomic 

%

SW8 
Atomic 

%

SW9 
Atomic 

%

SW10 
Atomic 

%

n-
TiO21

Atomic 
%

Assigned bonds or 
functions

P 2p3/2 133.6 0.2 0.1 - - 0.2 - 0.1 0.0 0.1 - PO4
3-

S 2p3/2 168.9 0.7 0.6 0.4 0.4 0.6 0.8 0.4 0.4 0.4 - SO4
2-

C 1s 285.0 24.4 26.2 26.5 26.9 26.5 27.7 28.5 27.0 26.9 19.5 C-C and C-H
C 1s 286.7 2.5 2.4 2.4 2.3 2.6 2.4 2.0 2.6 2.5 1.7 C-O
C 1s 288.6 1.4 1.7 1.8 1.4 1.9 1.9 1.5 1.7 1.8 1.8 O-C=O
C 1s 289.7 0.4 0.5 0.2 0.1 0.9 0.9 1.0 1.0 0.4 - CO3

2-

C total 26.9 30.8 30.8 33.2 33.9 32.7 33.2 32.3 31.8 23.0
Ca 2p3/2 347.6 0.4 0.8 0.2 0.2 1.5 1.5 1.4 1.5 0.6 - Ca2+

Mg 1s 1304.4 0.1 0.2 0.1 - 0.3 0.7 0.2 0.3 0.2 - Mg2+

Ti 2p3/2 458.9 19.7 18.9 20.1 19.8 18.1 17.7 18.0 18.4 19.1 23.8 Titanium in TiO2
O 1s 530.1 39.4 38.0 40.5 39.7 35.5 34.6 36.6 36.8 38.1 47.4 Oxygen in TiO2
O 1s 531.9 10.0 9.9 7.3 8.0 11.4 11.2 9.6 9.8 9.4 5.6 Oxygen in C-O, 

O-C=O, CO3
2-, 

PO4
3-, SO4

2-

1 washed n-TiO2 (control sample) before exposure to surface waters.

The data for SW7 is not available because the samples could not be retrieved after exposure.
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Figure S7: Illustrative Ti 2p and Mg 1s XPS peaks, baseline and fittings for n-TiO2/SW8.
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Figure S8: Comparison of oxygen content of n-TiO2 exposed to SWs (n-TiO2/SWs) in summer experiment. A) expected oxygen% in 

oxygen containing compounds calculated from C─O, O─C═O, and CO3
2- (C 1s), SO4

2- (S2p3/2), and PO4
3- (P2p3/2), B) oxygen% measured 
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for O 1s at 531.9 eV. Sample SW7 could not be recovered. (The dashed line depicts the oxygen concentration (531.9 eV) in washed n-TiO2).

C 1s and O 1s can confirm the presence of carbonate on the surface of nanoparticles. The C 1s XPS spectra of samples (n-TiO2/SWs) 

exhibited three main peaks with binding energies around 285.0, 286.7, and 288.6 eV correspond to C─C (and C─H), C─O, and O─C═O 

bonds, respectively (Figure 6 and Table S4). There was also a weak C 1s peak around 289.7 eV that can be assigned to CO3
2-. This peak 

is not seen in the washed n-TiO2 (Table S4). 

O 1s of the samples depict two peaks at 530.1 eV and 531.9 eV. The former (530.1 eV) is related to lattice oxygen in metal-oxides in 

accordance with the ratio of O/Ti = 2.0 in n-TiO2 structure (Table S4). Interpretation of the later O 1s peak (531.9 eV) is not straightforward 

since binding energies of different oxygen containing compounds e.g. carbon-oxygen bonds in organic components as well as oxyanions 

fall in this range; hence, this peak may be partly due to surface oxygen ions in carbonate. If relative oxygen content measured for O 1s 

(531.9 eV) equals the relative oxygen content calculated from oxygen containing compounds i.e. C─O, O─C═O, CO3
2- (C 1s), SO4

2- (S 

2p3/2), and PO4
2- (P 2p3/2) the assignment of C 1s peak at 289.6 eV to CO3

2- can be confirmed. The measured relative oxygen content 

oxygen% at 531.9 eV for each sample is depicted in Table S4. The calculation of oxygen% for oxygen containing compounds is performed 

using the expected stoichiometry and the resulting equation 1. 

(1)  

Oxygen% in oxygen containing compounds (calculated from C 1s, P 2p3/2, and S2p3/2) = 
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1* carbon% in (C-O) + 2* carbon% in (O─C═O) + 3* carbon% in (CO3
2-) + 4* phosphorus% in (PO4

3-) + 4* sulfur% in (SO4
2-)  

(Position of XPS peaks: C-O: 286.7 eV, O─C═O: 288.6 eV, CO3
2-: 289.7 eV, PO4

3-: 133.6 eV, and SO4
2-: 168.9 eV)

Figure S8 shows the comparison of measured oxygen% at 531.9 eV and the expected oxygen% obtained from oxygen containing compounds 

(equation 1) for TiO2/SWs in summer experiment. The oxygen concentration at 531.9 eV fits well with the correspondent species in equation 

1; hence, the various peak attributions are supported.
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Figure S9: Representative ATR-FTIR spectra of n-TiO2 exposed to SW6 in summer experiment. Black spectra: n-TiO2, Red spectra: n-

TiO2/SW6, Blue spectra: n-TiO2/SW6 rinsed with pure water.
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Figure S10: Correlation matrix among the elements and functional groups (analyzed by XPS) on the surface of n-TiO2 exposed to surface 

waters (SW1-SW10). The color scale on the left denotes the correlation coefficient. The important correlations are framed.
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Table S5: Zeta potential of n-TiO2 /SWs samples in the summer experiment.1 

TiO2 nanoparticles exposed to surface 
waters

pH2 Zeta Potential (mV)

n-TiO2 /SW1 6.8 -13.25 ± 1.02

n-TiO2 /SW2 7.1 -27.18 ± 0.85

n-TiO2 /SW3 6.5 -8.11 ± 0.57

n-TiO2 /SW4 6.8 -11.53 ± 3.43

n-TiO2 /SW5 8.2 -45.86 ± 1.73

n-TiO2 /SW6 8.2 -23.11 ± 0.92

n-TiO2 /SW8 8.0 -26.18 ± 1.02

n-TiO2 /SW9 8.0 -25.15 ± 0.58

n-TiO2 /SW10 7.2 -21.07 ± 1.67

Washed n-TiO2 6.5 -6.04 ± 1.25

1 The zeta potential was measured at 24 ºC with ionic strength of 0.01 M.

2 The pHs of the samples are around the neutral pH, so they can be comparable. 
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Spearman’s correlation matrix:

Figure S11: Correlation matrix among physicochemical parameters of SWs and functional groups appeared on nanoparticles after exposure 

to SWs. The color scale on the left shows (r) correlation coefficient. EC: electrical conductivity; DOC: dissolved organic carbon; Flu. 
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Protein: presence of a protein’s fluorescence peak at Ex/Em ~ 270/330; Flu. fulvic/humic acid: the ratio of fluorescence intensity at Ex/Em 

~ 340/430 to Ex/Em ~ 250/430. The functional groups assigned for IR bands are framed.

Figure S11 depicts the Spearman’s correlation matrix among surface water parameters as well as sorbed groups (assigned from ATR-FTIR 

bands in Table 1) onto nanoparticles. The general correlations among surface water parameters are observed here as well. For instance, high 

correlation coefficients (r) are seen among EC and ionic contents such as Ca2+-Mg2+ (r = 0.8), pH and EC are positively correlated (r = 

0.8),2 there is a negative correlation between DOC and NO3
– concentrations (r = -0.8), etc.3 The correlation matrix can be also used to 

recognize the degree of correlation between input (surface water parameters) and output (sorbed groups) variables.4 Based on Spearman 

correlation, most of the variables are highly correlated (r ≥ 0.6) with sorbed groups. For instance, sorbed carboxylate groups are highly 

correlated to pH, and Ca2+-Mg2+ (r = 0.7) of SWs which can depict the high influence of these parameters for the sorption of carboxylate 

groups. The highest correlation of carbonate is seen with EC and Ca2+-Mg2+ (r = 0.6) in accordance with the presence of calcium carbonate 

on n-TiO2/SWs. 
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Principal Component Analysis (PCA):

Figure S12: PCA biplot of individuals and variables. The biplot shows the PCA scores of variables (SWs physicochemical parameters) as 

vectors in black, and individuals i.e., samples in red. Spring and summer experiments are depicted by sp. and su., respectively. EC: electrical 
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conductivity; DOC: dissolved organic carbon; Flu. Protein: presence of a protein’s fluorescence peak at Ex/Em ~ 270/330; Flu. fulvic/humic 

acid: the ratio of fluorescence intensity at Ex/Em ~ 340/430 to Ex/Em ~ 250/430. The functional groups assigned for IR bands are framed.

The principal component analysis (PCA) biplot of individuals and variables is represented in Figure S12.  PCA axes, PC1 and PC2 together 

represented 65.4 % of variation of all the data set. Among samples, n-TiO2 in SW5, SW6, SW7, SW8, and SW9 in both spring and summer 

experiments have high contribution on variable scores (vectors) since they are on the same side (right) as the given variables. Besides, the 

more parallel a variable vector to a principal component axis, the more it contributes to that component;5 hence, Dim2 (or PC2, Eigenvalue= 

25.3 %) mostly represents aromaticity factors of surface waters (UV 254/210 and Fluorescence fulvic/humic acid), and nitrate ions. On the 

other hand, Dim1 (or PC1, Eigenvalue = 44.5 %) represents sorbed/precipitated groups onto nanoparticles (carboxylate, carbonate, aromatic 

ring), and the correlated surface water parameters; which among them, EC has the highest contribution (longest vector). PCA can also show 

the relationships between dependent variables,6 e.g. a high positive correlation is seen between “carboxylate” and pH, “aromatic ring” and 

Sulfate, and “carbonate” and Na+-K+-Cl- ions. Similar to Spearman correlation, PCA depicts a low influence of NO3
-, PO4

3-, UV 254/210, 

and Flu. fulvic/humic acid (PC2) on composition of functional groups of natural coating (PC1). Also, a high negative correlation (opposite 

angles) between fluorescence fulvic/humic acid and UV 254/210 can be explained as a negative correlation based on the aromaticity of the 

system i.e. aromaticity of surface waters is proportional to UV 254/210,7 and is inversely proportional to fluorescence fulvic/humic acid.8 
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Figure S13: Density plots of the accuracy of the RF-models (50 models from 50 different initial data partitioning) for ATR-FTIR bands 
of n-TiO2/SWs. 
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#R codes#
# libraries
# data cleaning/ data transformation
library(data.table) 
library(dplyr)
library(tidyverse)

# cluster analysis
library(cluster) 
library(factoextra)
library(optpart)

# correlation analysis
library(corrplot)
library(corrr)
library(corr2D)

#PCA
library(devtools)
library(factoextra)
library(chemometrics)

# random forest
library(rsample)
library(ranger)
library(randomForest)
library(vip)
library(caret)

# plotting
library(ggplot2)
library(cowplot)
library(grid)
library(ggcorrplot)

###################
### Import data ###
###################
Data <- read.csv(file.choose(), dec = ",", sep = "\t")

# Convert id as rownames
rownames(Data) <- as.character(Data[[1]])
Data[[1]] <- NULL
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# Formating variables
Data[17:length(Data)] <- lapply(Data[17:length(Data)], FUN = as.factor)

########################
### Data Exploration ###
########################

# Scatter plots for exploring high correlations
plot(as.numeric(Data$Ca)~Data$Mg, xlab = expression(paste("Ca"^"+2")), 
     ylab = expression(paste("Mg"^"+2")))
plot(as.numeric(Data$Na)~Data$K, xlab = expression(paste("Na"^"+")), 
     ylab = expression(paste("K"^"+")))
plot(as.numeric(Data$Na)~Data$Cl, xlab = expression(paste("Na"^"+")), 
     ylab = expression(paste("Cl"^"-")))

### Remove highly correlated variable: 
### Combine Ca and Mg
### Combine K, Na, and Cl
### Season and PO4 removed (never important in preliminary RF-models)
### Remove F (low concentrations)

Data_red <- Data[-c(1,6,7,10:14)]
Data_red <- cbind(Mg_Ca = Data$Ca + Data$Mg, 
                  Na_Cl_K =  Data$Cl + Data$Na + Data$K, 
                  Data_red)
colnames(Data_red)[c(1:2,9:14)] <- c("Mg+Ca","Na+K+Cl","UV254/210","Fluo-
fulvic/humic","Fluo-protein","IR-carboxylate","IR-carbonate","IR-aromatic rings")

# Plot parameter density distributions
tiff("Density distributions.tiff", width = 7, height = 5, res = 400, units = "in")
Data_red %>% keep(is.numeric) %>% gather() %>% 
  ggplot(aes(value)) +
  facet_wrap(~ key, scales = "free") +
  geom_histogram()+
  theme_classic()
dev.off()

####################
### Correlation  ###
####################
# Create a correlation matrix 
tiff("Correlation map.tiff", width = 7, height = 7, res = 400, units = "in")
Data_red %>% apply(., MARGIN = 2, FUN = as.numeric) %>% cor(., method ="spearman") 
%>% 
  round(.,0.5) %>% corrplot(., method="circle", type="upper", tl.col = "black")
dev.off()
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############
### PCA  ###
############
### Check requirements
## Multivariate normality
# Plot a QQ-plot
chisqplot.multi <- function(m, main="QQ plot", ylab=expression(paste(chi^2, " Quantile"))){
  # n x p numeric matrix
  x <- as.matrix(m)
  # centroid
  center <- colMeans(x) 
  n <- ncol(x)
  cov <- cov(x)
  # distances 
  d <- mahalanobis(x,center,cov) 
  s <- sort(d, index=TRUE)
  q <- (0.5:length(d))/length(d)
  par(las=1, cex=1.2)
  plot(s$x, qchisq(q,df=n), main=main, xlab="Ordered Mahalanobis D2", ylab= ylab)
  abline(a=0,b=1)
}
chisqplot.multi(Data_red[1:10])

# Normal after reducing the variables
# Look for outliers
# Plot score distances and othogonal distances
par(mfrow=c(1,2),cex=2)
pcaDiagplot(Data_red[1:10], 
            princomp(Data_red[1:10],cor = TRUE),
            a =2, quantile=0.975
            )

# Perform PCA
res.pca <- Data_red %>% apply(., MARGIN = 2, FUN = as.numeric) %>% prcomp(., scale = 
TRUE)
# Plot biplot
dimnames(res.pca$x)[[1]] <- rownames(Data_red)
tiff("biplot.tiff", width = 7, height = 7, res = 400, units = "in")
fviz_pca_biplot(res.pca, repel = TRUE,
                col.var = "black",
                col.ind = "red"
                )+
  theme_classic()+
  theme(panel.border = element_rect(colour = "black", fill=NA, size=1),
        axis.title.y  = element_text(size=16),
        axis.title.x  = element_text(size=16),
        title =  element_blank(),
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        text=element_text(size=16)
        )
dev.off()

########################
### CLUSTER ANALYSIS ###
########################
# Simple hierarchical clustering

#Scale data
#Cluster analysis is done on all measured surface water parameters
#Remove IR bands
tiff("hclust.tiff", width = 10, height = 5, res = 400, units = "in")
Data[-c(1,18:20)] %>% dist(., method = "euclidean") %>% hclust(., method = "ward.D2") %>% 
  plot(., cex = 1, main = "", xlab = "", sub = "")
dev.off()

############################
#####  RANDOM FOREST  ######
############################
# Fix names
colnames(Data_red) <- make.names(colnames(Data_red))
## Random forest analysis function
RF <- function(X,
               seed = 123,
               mtry_step = 1,
               label = NULL, Y) {
  # create training and test data set
  set.seed(seed)
  split <- initial_split(X, prop = .7, strata = Y)
  X_train <- training(split)
  X_test  <- testing(split)
  # number of features
  n_features <- length(setdiff(names(X_train), Y))
  # Grid for different parameters
  hyper_grid <-
    expand.grid(
      mtry        = seq(2, (length(X) - 1), by = mtry_step),
      node_size   = seq(1, 5, by = 1),
      sample_size = c(0.63, 0.7, 0.8),
      rmse = NA,
      OOB_error = NA
    )
  # Excute RF with grid search
  for (j in 1:nrow(hyper_grid)) {
    # train model



30

    model <- ranger(
      formula         = as.formula(paste0(Y,"~.")),
      data            = X_train,
      seed            = 123,
      verbose         = FALSE,
      num.trees       = n_features * 10,
      mtry            = hyper_grid$mtry[j],
      min.node.size   = hyper_grid$node_size[j],
      sample.fraction = hyper_grid$sample_size[j]
    )
    # add OOB error to grid
    hyper_grid$OOB_error[j] <- model$prediction.error
    hyper_grid$rmse[j] <- sqrt(model$prediction.error)
  }
  
  # top 50 models accoridng to OOB error
  Param_Optimization <-
    hyper_grid[order(hyper_grid$OOB_error), ] %>% head(., 50)
  # use best tuning parameters
  best_set <- hyper_grid[order(hyper_grid$OOB_error),][1,]
  # re-run model with permutation-based variable importance
  m_ranger_permutation <- ranger(
    formula         = as.formula(paste0(Y,"~.")),
    data            = X_train,
    num.trees       = n_features * 10,
    mtry            = best_set$mtry,
    min.node.size   = best_set$node_size,
    sample.fraction = best_set$sample_size,
    importance      = 'permutation',
    verbose         = FALSE,
    seed            = 123
  )
  # most important variables according to permutation method
  names(m_ranger_permutation$variable.importance) <- sub("_", ".",
                                                         sub(
                                                           "Mass_",
                                                           "",
                                                           names(m_ranger_permutation$variable.importance)
                                                         ))
  # access vip data
  var_imp <- vip::vip(m_ranger_permutation, num_features = 25, geom = NULL)
  RF_masses <- var_imp$data
  #### Predict for the test data ####
  pred_class <- predict(m_ranger_permutation, 
                        X_test[, -which(names(X_test) == Y)]
                        )
  # Assess performance on test data
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  Confusion_matrix <-
    caret::confusionMatrix(factor(pred_class$predictions),
                           factor(X_test[[which(colnames(X_test) == Y)]])
    )
  
  O <- list(
    Parameters_optimization = Param_Optimization,
    Important_masses = RF_masses,
    Confusion_matrix = Confusion_matrix
  )
  return(O)
}

# Run RF on 50 partitions for each IR-signal
Importances_all <- list()
k <- 1
for (j in 12:14){
  # Choose Data
  Data_RF <- Data_red[c(1:11,j)]
  Y <- names(Data_red)[j]
  # Random forest analysis for different data partitioning
  Results_RF <- list()
  Accuracies <- c()
  Importances <- tibble(Variables = sort(colnames(Data_RF)[1:(length(Data_RF)-1)]))  
  for (i in 1:50){
    Results_RF[[i]] <- RF(Data_RF, 
                          mtry_step = 1, 
                          Y = Y, 
                          seed = i)
    Accuracies <- c(Accuracies, 
                    Results_RF[[i]]$Confusion_matrix$overall[[1]])
    Importances <- cbind(Importances, 
                         
Results_RF[[i]][["Important_masses"]][order(Results_RF[[i]][["Important_masses"]]$Variable),
2]
    )
  }
  
  # Plot accuracies for the 50 partitions
  tiff(paste0("Accuracies-",Y,".tiff"),width = 5, height = 5, units = "in", res = 400)
  print(lattice::densityplot(Accuracies))
  dev.off()
  
  #Save Importances for the 50 partitions
  rownames(Importances) <- Importances$Variables
  Importances$Variables <- NULL
  Importances_all[[k]] <- Importances %>% t(.) %>% as.data.frame(.) %>% cbind(.,Y)
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  k <- k+1
}
Importances_all <- rbind(Importances_all[[1]],
                         Importances_all[[2]],
                         Importances_all[[3]])

tiff(paste0("Importances.tiff"), width = 10, height = 7, res = 400, units = "in")
par(mar=c(8.1, 4.1, 2.1, 1.1),las=2,cex.lab = 1.25,cex.axis = 1.1)
boxplot(Importances_all[,-length(Importances_all)], boxfill = NA, border = NA,
        ylab = "Importance",
        names = c("DOC","EC","Flu. fulvic/humic","Flu. 
Protein","Ca+Mg","Na+K+Cl","Nitrate","pH","Sulfate","T°C","UV 254/210")
)
boxplot(Importances_all[Importances_all$Y=="IR.carboxylate", -length(Importances_all)], 
        xaxt = "n", yaxt = "n",
        add = TRUE, 
        boxfill="red3", 
        boxwex=0.19, 
        at = 1:ncol(Importances_all[,-length(Importances_all)]) - 0.23
)
boxplot(Importances_all[Importances_all$Y=="IR.carbonate", -length(Importances_all)], 
        xaxt = "n", yaxt = "n",
        add = TRUE, 
        boxfill="orangered", 
        boxwex=0.19, 
        at = 1:ncol(Importances_all[,-length(Importances_all)])
)
boxplot(Importances_all[Importances_all$Y=="IR.aromatic.rings", -length(Importances_all)], 
        xaxt = "n", yaxt = "n",
        add = TRUE, 
        boxfill="yellow", 
        boxwex=0.19, 
        at = 1:ncol(Importances_all[,-length(Importances_all)]) + 0.23
)
legend("topright", 
       legend=c("IR-carboxylate", "IR-carbonate", "IR-aromatic"),
       fill=c("red3", "orangered","yellow"),
       bty = "n", cex = 1.1)

dev.off()

#########
##2D-IR##
#########

#Reading
read_ftir <- function(path = ".", dec = ".", encoding = getOption("encoding")) {
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  files <- list.files(path = path, pattern = "\\.asp$")
  ret <- data.frame()
  for (cfile in files) {
    con <- file(file.path(path, cfile), encoding = encoding)
    lines <- as.numeric(readLines(con))
    close(con)
    sig <- lines[-c(1:6)]
    dat <- rbind(sig)
    colnames(dat) <- as.character(seq(lines[2], lines[3], length.out = lines[1]))
    rownames(dat) <- sub("\\.asp$", "", cfile)
    ret <- rbind(ret, dat)
  }
  return(ret)
}
#SG-smoothing
Smoothing <- function(X){
  Spectra_smoothed <- X
  for (i in 1:length(Spectra_smoothed[[1]])){
    Spectra_smoothed[i,] <- signal::sgolayfilt(as.data.frame(t(X[i,]))[[1]], 3, 21)
  }
  return(Spectra_smoothed)
}
#Normalizing
Normalizing <- function(X, method="TiO2"){
  if (method=="TiO2"){
    Y <- X
    for (i in 1:length(X[[1]])){
      Y[i,] <- apply(Y[i,],MARGIN = 1, FUN = function(Z){Z/Y[i,length(Y)]})   
    }
    return(Y)
  }
  if (method=="scale"){
    Y <- X %>% as.matrix(.) %>% t(.) %>% scale(.,center=T,scale=T) %>% t(.) %>% 
as.data.frame(.)
    return(Y)
  }
  if (is.null(method)==T){}
}
#Selecting a window
Selecting <- function(X, START = 0, END = length(X), SAMPLE_EXCL = NULL){
  if (is.null(SAMPLE_EXCL) == T){
    Y <- X[which(as.numeric(colnames(X))>START & 
                   as.numeric(colnames(X))<END)]
  } else {
    Y <- X[-SAMPLE_EXCL,
           which(as.numeric(colnames(X))>START & 
                   as.numeric(colnames(X))<END)]
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  }
  return(Y)
}
#Removing trends 
##!!!has to be optimize for each range!!!##
##For 1400-1800: df:5; for 2700-3100: df=3;iterations=5;threshold=0.01##
Remove_baseline <- function(X, df = 3, iterations = 5){
  Y <- X
  for (i in 1:length(X[[1]])){
    w <- rep(1,times = length(X)) 
    for (j in 1:iterations){
      Trend <- X[i,] %>% smooth.spline(x=as.numeric(colnames(X)),
                                       y=.,
                                       w=w,
                                       df=df)
      w[which(X[i,] - predict(Trend, as.numeric(colnames(X)))$y > 0.01*mean(t(X[i,])))] <- 0
    }
    Y[i,] <- X[i,]-predict(Trend, as.numeric(colnames(X)))$y
  }
  return(Y)
}

#####################
###Import IR Data#####
#####################
#Define path and process data
path <- "file.choose"
path %>% read_ftir(.) %>% Smoothing(.) %>% Normalizing(.,method = "TiO2") -> 
Spectra_processed 
#%>% Remove_baseline(.,df=5,iterations=10)
path %>% read_ftir(.) %>% Smoothing(.) %>% Normalizing(.,
                                                       method = "TiO2"
) %>% Selecting(.,
                START = 1300,
                END = 1800
) %>% Remove_baseline(.,
                      df=3, 
                      iterations=5
) -> Spectra_processed_1
path %>% read_ftir(.) %>% Smoothing(.) %>% Normalizing(.,
                                                       method = "TiO2"
) %>% Selecting(.,
                START = 2750,
                END = 3050
) %>% Remove_baseline(.,
                      df=3, 
                      iterations=5
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) -> Spectra_processed_2

Both_regions <- path %>% read_ftir(.) %>% Smoothing(.) %>% Normalizing(.,method = 
"TiO2") %>% Selecting(.,1300,3050)
Both_regions[which(as.numeric(colnames(Both_regions)) < 1800)] <- Spectra_processed_1
Both_regions[which(as.numeric(colnames(Both_regions)) > 2750)] <- Spectra_processed_2

#Plot all spectra
plot_spectra <- function(X, Start = 1, End = length(X[[1]])){
  X %>% apply(X = .,MARGIN = 1,FUN = max) %>% max(.) -> MAX
  X %>% apply(X = .,MARGIN = 1,FUN = min) %>% min(.) -> MIN
  plot(as.data.frame(t(X[1,]))[[1]]~
         as.numeric(colnames(X)), 
       type = "n",
       ylim = c(MIN,MAX),
       xlab = expression("Wavenumber in cm"^-1),
       ylab = "Normalized Absorbance")
  pal <- colorRampPalette(c("red", "yellow"))
  for (i in Start:End){
    lines(as.data.frame(t(X[i,]))[[1]]~
            as.numeric(colnames(X)), 
          type = "l",
          col = pal(End)[i],
          lwd = 2, legend(),
  }
}
plot_spectra(Spectra_processed_2)

#Synchronous
plot_corr2d(Corr_Spectra,
            xlim = c(1300,1550),
            ylim = c(1300,1550)
)

#Asynchronous
plot(Corr_Spectra, Im(Corr_Spectra$FT),
     xlim = c(1300,1550),
     ylim = c(1300,1550)
)
#Asynchronous
plot(Corr_Spectra, Im(Corr_Spectra$FT),
     xlim = c(1300,1530),
     ylim = c(2750,30000)
)


