Supporting information for

Nanoelicitors with prolonged retention and sustained release to produce beneficial compounds in wine

Belén Parra-Torrejón^a, Gloria B. Ramírez-Rodríguez,^{a,*} Maria J. Gimenez-Bañon,^b Juan D. Moreno-Olivares,^b Diego F. Paladines-Quezada,^b Rocío Gil-Muñoz,^b José M. Delgado-López^{a,*}

^a Departamento de Química Inorgánica, Facultad de Ciencias, Universidad de Granada, Av. Fuente Nueva, s/n, 18071 Granada, Spain.
^b Instituto Murciano de Investigación y Desarrollo Agroalimentario, Ctra. La Alberca s/n, 30150, Murcia, Spain.

(*) Authors to whom any correspondence should be addressed: J.M.D.-L. (jmdl@ugr.es); G.B.R.-R. (gloria@ugr.es)

Table of contents

S1. MeJ quantification by UV-Vis spectroscopy Fig. S1. Fig. S2. Fig. S3. Fig. S4. Fig. S5. Fig. S6. Fig. S7. Fig. S8. Table S1. Table S2.

S1. MeJ quantification by UV-Vis spectroscopy

MeJ ketone group strongly absorbs in the UV region near $\lambda = 291$ nm and its ester group absorbs at $\lambda = 214$ nm (Figure S1a).¹ We selected the former absorption band for the calibration curves. Taking into account the low solubility of MeJ, we carried out two calibration curves: (1) 100-800 ppm in ultrapure water (Figure S1b, green dots) and (2) 100-2000 ppm ultrapure water:ethanol (50:50, Figure S1b, blue dots). The fitting parameters for each curves are:

$$Abs = 1.73 \cdot 10^{-4} [MeJ] + 0.0078 \quad R^2 = 0.99 \quad (1)$$
$$Abs = 2.07 \cdot 10^{-4} [MeJ] - 0.0028 \quad R^2 = 0.99 \quad (2)$$

Fig. S1 UV-Vis spectrum (a) and calibration curve (b) of methyl jasmonate in H_2O (green dots) and $H_2O/EtOH$ (1:1, blue dots). Dashed lines represent the best fits of the experimental data according to equation 1 for H_2O and equation 2 for $H_2O/EtOH$.

Fig. S2 FTIR spectrum of MeJ showing the most intense absorption band at 1740 cm⁻¹ corresponding to carbonyl (ketone) groups.²

Fig. S3 TEM micrograph of nano-MeJ. The nanoparticles shows the same morphology than control ACP nanoparticles.³ The amorphous nature of the particles is confirmed by the lack of diffraction spots in the selected-area electron diffraction (SAED) pattern (inset).

Fig. S4 XRD patterns of nano-MeJ sample freeze-dried at time 0, 49 and after 363 days. XRD patterns after 49 and 363 days of storage show two broad Bragg peaks at around 26° and 32° (2θ) ascribed to hydroxyapatite (HA, ASTM card file No 09-432).

Fig. S5 MeJ release profile from nano-MeJ in ultrapure water. Dashed line represents the best fits of the experimental data to the first order equation: $y(t) = a^*(1-e^{-kt})$, being the rate constant, k = 0.05 h⁻¹. The inset shows the linearized experimental data (symbols) and the first order equation (line).

Fig. S6 (a) *t*-piceid and **(b)** *c*-piceid concentration (mg L⁻¹) in wines from grapes treated with MeJ (5 mM, MeJ5, and 10 mM, MeJ10) and nano-MeJ with a total concentration of 1 mM. Results of grapes treated with ACP nanoparticles (nano-Control) and non-treated grapes (control) are also shown. Data are expressed as mean with their corresponding standard deviation as error bars. Statistically significant differences between measurements are marked with * (P-value < 0.05), ** (P-value < 0.01) or *** (P-value < 0.001).

Fig. S7 Raman spectroscopy of 10 mM MeJ (red spectrum) and NanoMeJ (blue spectrum) after 24 hours at 50°C. Asterisks indicate the presence of MeJ.

Fig. S8. Images of vineyards leaves treated with water (Control), MeJ solution (10 and 2 mM) and NanoMeJ (2 mM) at time zero (a) and after 24 hours (b).

	Ca ^a (wt.%)	Pa (wt.%)	K ^a (wt.%)	Ca/P ^a	ζ ^b (mV)	MeJ ^c (wt.%)
Nano-MeJ	18.02 ± 4.3	8.79 ± 1.3	0.27 ± 0.01	1.57 ± 0.13	-15.7 ± 0.6	6.15 ± 1.71
Nano- Control	14.7 ± 0.14	8.06 ± 0.1	0.46 ± 0.01	1.41 ± 0.03	-10.3 ± 0.7	-

Table S1. Chemical composition and ζ -potential of nano-MeJ and ACP nanoparticles (nano-Control). Data are expressed as mean \pm standard deviation.

^a Analysed by ICP-OES. ^bAnalysed by Litesizer 500. ^cEstimated by UV-Vis spectroscopy

Table S2. Enological parameters of the must from grapes under each treatment. Statistically significant differences between measurements are marked with ** (P-value < 0.01) whereas ns means no statistical differences.

	Control	Nano-Control	MeJ	Nano-MeJ	р
°Baumé	12.9 ± 0.4	13.1 ± 0.2	12.8 ± 0.2	12.9 ± 0.4	ns
Total Acidity (g/L)	$2.8\pm0.2b$	$2.5\pm0.1\text{c}$	$3.2\pm0.2a$	$2.9\pm0.1b$	**
pH	3.9 ± 0.1	3.9 ± 0.1	3.8 ± 0.1	3.9 ± 0.1	ns

References

- 1 J. Islam, S. Phukan and P. Chattopadhyay, Development of a validated RP-HPLC/DAD method for the quantitative determination of methyl jasmonate in an insect repellent semi-solid formulation, *Heliyon*, 2019, **5**, e01775.
- 2 T. Sato, T. Kawara, K. Sakata and T. Fujisawa, Jasmonoid Synthesis from sci-4-Heptenoic Acid, *Bull. Chem. Soc. Jpn.*, 1981, **54**, 505–508.
- G. B. Ramírez-Rodríguez, G. Dal Sasso, F. J. Carmona, C. Miguel-Rojas, A. Pérez-de-Luque, N. Masciocchi, A. Guagliardi and J. M. Delgado-López, Engineering Biomimetic Calcium Phosphate Nanoparticles: A Green Synthesis of Slow-Release Multinutrient (NPK) Nanofertilizers, ACS Appl. Bio Mater., 2020, 3, 1344–1353.