Electronic Supplementary Material (ESI) for Environmental Science: Nano.

This journal is © The Royal Society of Chemistry 2021

Emerging investigator series: Chemical transformation of silver and zinc oxide nanoparticles

in the simulated human tear fluids: Influence of biocorona

Lingxiangyu Li,*,† Ashfeen Ubaid Khan,‡ Xiang Zhang,#,§,† Xiaoting Qian,‡ and Yawei Wang†,#,§

† School of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy

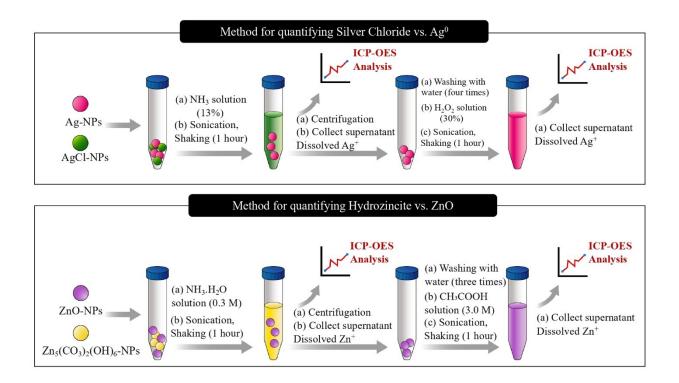
of Sciences, Hangzhou 310024, China

[‡] Department of Chemistry, Zhejiang Sci-Tech University, Hangzhou 310018, China

State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-

Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China

§ College of Resources and Environment, University of Chinese Academy of Sciences, Beijing


100049, China

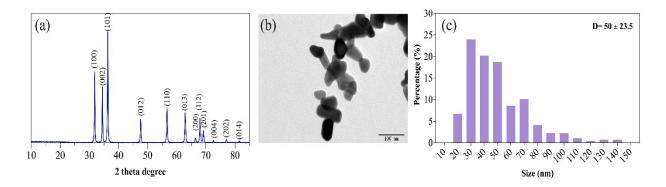
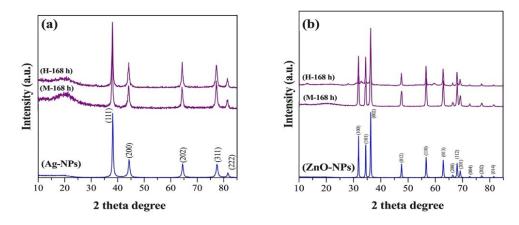
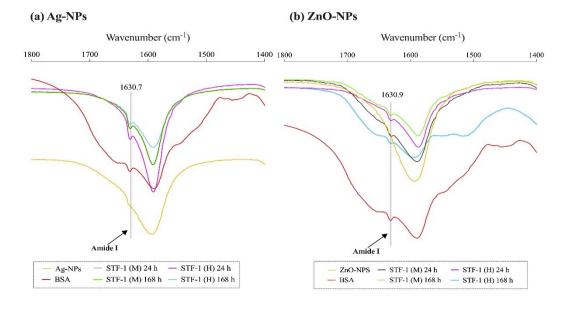
Corresponding Author:

* Dr. Lingxiangyu Li

E-mail: <u>lingxiangyu.li@ucas.ac.cn</u>

S1

Scheme S1. Schematic representation of the experimental procedure for the selective dissolution of AgCl-NPs against Ag-NPs or Zn₅(CO₃)₂(OH)₆-NPs against ZnO-NPs.

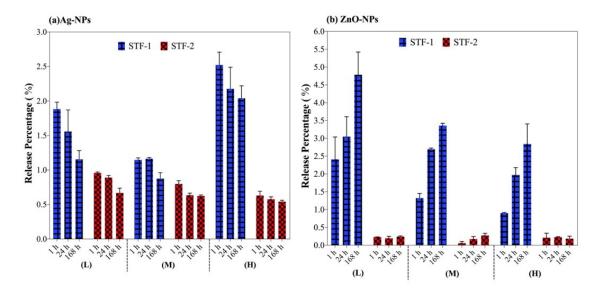

Figure S1. Physicochemical characterization of pristine ZnO-NPs used in this study.

Figure S2. XRD spectra of pristine Ag-NPs and ZnO-NPs and their transformed products from the STF-1 with middle and high particle loadings. (a) Ag-NPs. (b) ZnO-NPs.

Figure S3. FT-IR spectra of precipitate collected from the STF-1 with Ag-NPs or ZnO-NPs. (a) Ag-NPs. (b) ZnO-NPs.

Figure S4. The dissolution of Ag-NPs and ZnO-NPs in the simulated tear fluids. The percentage represented the dissolved ions accounting for nanoparticles added at the beginning of exposure.

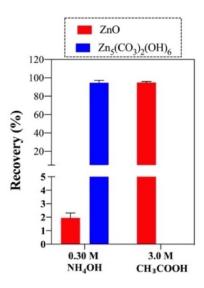


Figure S5. Selective dissolution of $Zn_5(CO_3)_2(OH)_6$ against ZnO by using ammonia solution (0.3 M) and acetic acid solution (3.0 M).

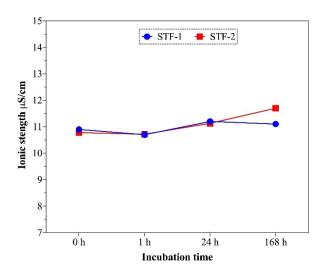


Figure S6. Ionic strength of STF-1 and STF-2 as a function of incubation time.

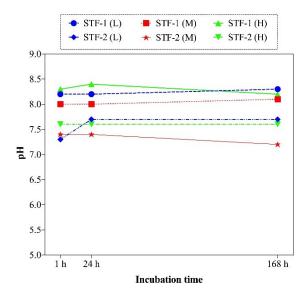


Figure S7. pH of STF-1 and STF-2 as a function of incubation time.

Table S1. Composition of the simulated tear fluids used in this study

	Concentration (g/L)	
Chemical composition	STF-1 (pH 8.0) ¹	STF-2 (pH 7.4) ²
Sodium bicarbonate	2.18	1.924
Sodium chloride	6.78	6.782
Potassium chloride	1.38	1.11
Calcium chloride	0.0084	0024
Albumin (BSA)	6.69	
Glucose	0.025	

 Table S2. sp-ICP-MS instrumental and analytical details.

Parameter group	Parameter	Parameter value	
ICP-MS component	ICP-MS model	Agilent 7900	
	Nebulizer	MicroMist, glass	
	Spray chamber	Quartz	
ICP-MS settings	RF power	1550 W	
	Nebulizer gas flow	1.00 L/min	
	Sample flow rate	0.270 mL/min	
	Dwell time	100 μs	
	Total acquisition time	60 s	
	Data acquisition mode	TRA	
Reaction gas	No gas	¹⁰⁷ Ag ⁺ , ¹⁹⁷ Au ⁺	
	Не	$^{66}Zn^+$	

TE (%): 6.8-8.5

References

- Hedberg, Y.; Gustafsson, J.; Karlsson, H. L.; Moller, L.; Wallinder, I. O. Bioaccessibility, bioavailability and toxicity of commercially relevant iron- and chromium-based particles: in vitro studies with an inhalation perspective. *Part. Fibre. Toxicol.* 2010, 7, 23.
- 2. Margues, M. R. C.; Loebenberg, R.; Almukainzi, M. Simulated biological fluids with possible application in dissolution testing. *Dissolut. Technol.* 2011, 18, 15-28.