Enhanced photocatalytic activity and easy recovery of visible light active MoSe₂/BiVO₄ heterojunction immobilized on *Luffa*

Cylindrica- Experimental and DFT study

Harshita Chawla¹, Meghna Saha¹, Sumant Upadhyay², Jyoti Rohilla³, Pravin Popinand

Ingole³, Andras Sapi⁴, Imre Szenti⁴, Mohit Yadav⁴, Vasily T. Lebedev ⁵, Amrish Chandra⁶

,Seema Garg^{1*}

Supplementary Information

S1: UV-vis. spectra of MB (20mgL⁻¹) and Phenol absorption (50mgL⁻¹)

The maximum absorption peak for MB and Phenol was obtained at 622 nm and 270 nm

Figure S.1 UV-vis. spectra of (a) MB absorption with concentration of 20 mgL⁻¹ and (b) Phenol absorption 50 mgL^{-1} .

respectively. This was recorded on Schimazdu-1800 UV-Vis. spectrophotometer.

S2: Comparison of atomic % data of XPS and EDX

The compositions obtained by the XPS and EDX for the catalysts were listed in the table **S.1** for comparison. The XPS analysis revealed the composition only of the surface within a several nano-meter range. Whereas, the EDX covers the whole catalyst since the nanoparticle diameter, 200-300 nm, was in the range of the X-ray penetration depth. A comparison of these compositions clarified the features of the surface structure of the 0.15MoSe₂@BiVO₄. First,

Bismuth content at surface of catalyst (XPS data) is comparatively very low in comparison with core (EDX) of catalyst. The vanadium and oxygen content shows higher percentage at surface in comparison with core. Molybdenum and Selenium shows higher content at core in comparison with surface. Presence of carbon shows deposition of CO_2 at time of XPS analysis. This shows Mo and Se are majorly present in inner layers than on surface ¹.

Table S.1				Comparison
of atomic obtained from Analysis	Element	XPS	EDAX	[–] percent thus
	Vanadium	15.49	6.654182	[–] XPS and EDX
	Selenium	9.06	12.94405	
	Molybdenum	2	5.748133	
	Bismuth	11.22	74.65364	
	Oxygen	36.96	0	
_	Carbon	25.27	0	
	-			

S3: Immobilization of 0.15MoSe2@BiVO4 on Luffa cylindrica

The *Luffa* was washed with water then double distilled water (D.I.) and ethanol to remove all impurities attached to it. Again, it was washed with D.I. water and kept for overnight drying at 60 °C. Then, the weight of completely dried luffa was taken. It measured 11.5585g. Then, around 1.15 g of catalyst was dispersed in ethanol: water (1:1). Now, the catalyst was immobilized using dip-coating method. After complete immobilization, the luffa was dried in oven at 60°C overnight. Next day the luffa was washed several times with ethanol and water to remove loosely held particles till clear solution was obtained. Again, Luffa was kept at 60°C till complete drying. The dried luffa was weighed. It measured 12.5585g there by implying immobilization of 1g of 0.15MoSe₂@BiVO₄ on *Luffa cylindrica*. The weight of Luffa remained same after usage for 5 continuous cycles also.

S4: Band Positions Calculations

For a semiconductor, valance band energy potential can be calculated at zero charge point using the following empirical formula:

 $E_{VB} = X - E_e + 0.5E_g (1)$

here E_{VB} is valance band potential; X is the absolute electronegativity of respective semiconductors, and it is defined as geometric mean of all constituent atoms of the respective semiconductors; E_g is the obtained band gap from diffuse reflectance spectra; E_e is the energy of free electrons on hydrogen scale (Ca. 4.5 eV). The conduction band (CB) energy potential is calculated as follows:

$$E_{CB} = E_{VB} - E_g (2)$$

From above equations, CB and VB positions of BiVO₄ and MoSe₂ were calculated and are summarised in **Table S2** below and accordingly heterojunction was elucidated (Figure S2)

Figure S.2 The CB and VB position comparisons of $BiVO_4$ and $MoSe_2$ Table S.2 Band energy positions of $BiVO_4$ and $MoSe_2$

Semiconductor	Absolute Electronegativity (eV)	E _g (eV)	Bandgap (eV)	CB Position (eV)	VB Position (eV)
BiVO ₄	6.04	4.5	2.73	0.175	2.905
$MoSe_2$	5.13	4.5	1.54	-0.140	1.40

S5: 20 ppm MB degradation

Samples	Concentration (mgL ⁻¹)	Time taken (in min.)	% Degradation	Pollutant	References
Table S 2 Description of MD and Dhenel wing very bismouth based what a statist					

Table S.3 Degradation of MB and Phenol using various bismuth based photocatalyst

BiOCI-G	50	300	82	Phenol	2
BiVO ₄ -Al ₂ O ₃	10	360	86	MB	3
Co-BiVO ₄ (MB)	15	300	90	MB	4
g-C ₃ N ₄ /Bi ₂ O ₃ /TiO ₂ -NTs	-	180	77.5	MB	5
Bi ₂ O ₃ (1.0wt.%)/C ₃ N ₄	3.51	120	78.1	MB	6
FTO-BiVO ₄	5	120	100	MB	7
BiVO ₄ /WO ₃	10	180	94.8	Phenol	8
BiVO ₄ /Fe ₂ O	50	120	68.89	Phenol	9
0.15MoSe ₂ @BiVO ₄ -Luffa	50	120	96.74	Phenol	Present work
0.15MoSe ₂ @BiVO ₄ -Luffa	20	120	96.96	MB	Present work

The photoactivity of as fabricated catalysts were determined by studying photodisintegration of 20ppm MB dye. The detailed study including effect of doping, effect of concentration of pollutant, effect of pH of pollutant, effect of radical quenchers is represented in **figure S.3**.

Figure S.3 Photodisintegration of (a)MB using BiVO₄ and MoSe₂, (c)MB using with BiVO₄ decorated with MoSe₂ (varying concentration of MoSe₂ i.e., 0.05M, 0.1M, 0.15M and 0.2M), and 0.15MoSe₂@BiVO₄ on Luffa cylindrica (c, and d) kinetic linear simulation curves of MB with respective samples; Effect of pH(e) and initial concentration (g) on photodegradation of MB by 0.15MoSe₂@BiVO₄-Luffa cylindrica, with their respective kinetic linear simulation curves (f, h); (i)Photodisintegration of MB by 0.15MoSe₂@BiVO₄-Luffa in the presence of different scavengers; (j)Percentage degradation of MB for five consequent cycles of using 0.15MoSe₂@BiVO₄-Luffa

S6: Illustrating stability of as fabricated 0.15MoSe₂@BiVO₄ and 0.15MoSe₂@BiVO₄-luffa

To illustrate the stability of as fabricated catalyst and immobilized catalyst after five continuous cycles of degradation of phenol, XRD of used catalyst and Luffa with immobilized catalyst was carried out. The XRD [figure. S4 (a)]showed a little decrease in intensity of peaks which can due to continuous usage but the all the diffraction pattern were thus obtained. The SEM image showed that particles are still impregned on Luffa fibres [figure. S4 (b)]. Also, after complete washing and drying the weight of 0.15MoSe₂@BiVO₄-Luffa remained constant thereby implying stability of particles on *Luffa cylindrica*.

Figure S.4 XRD of used 0.15MoSe₂@BiVO₄ and (b) SEM image of used 0.15MoSe₂@BiVO₄-Luffa

S7: Adsorption of MB and Phenol on catalyst in dark and photodegradation after visible light irradiation

S7 (a). This study was carried out in dark for confirming the time required for adsorptiondesorption equilibrium for blank luffa, $0.15MoSe_2@BiVO_4$ and, $0.15MoSe_2@BiVO_4$ -Lufa.

Figure S.5 Adsorption of phenol in dark using blank Luffa (orange), 0.15MoSe₂@BiVO₄ (teal), and 0.15MoSe₂@BiVO₄-Luffa

The study was carried out using 50ppm phenol. The samples were kept under ultra-sonification and after every 15 mins., the 3.5 mL of sample was collected and UV-Vis. spectra was recorded. The obtained spectra showed that after 60 mins adsorption-desorption equilibrium was established and further no adsorption was obtained.

S7 (b). To check the photoactivity of blank Luffa on MB and Phenol, blank Luffa cylindrica was implement for 60 min in dark and then kept in visible light irradiation till 90 mins. The results showed that blank luffa is only capable of adsorption of pollutants and not degradation.

Figure S.6 Adsorption in dark for 60 mins and then exposed to visible light using blank Luffa cylindrica [phenol (orange), MB (wine)]