Unravelling the facets-dependent behavior among H_2O_2 , O_3 and oxygen vacancies on CeO_x and the promotion of peroxone reaction at acidic condition

Weirui Chen^{a,b,c,d}, Hengxi He^{†,a,b,c,d}, Ruini Zou^a, Yidan Chen^a, Xukai Li^{a,b,c,d}, Jing Wang^{a,b,c,d*}, Yiming Tang^{a,b,c,d},

Laisheng Li^{a,b,c,d*}

a School of Environment, South China Normal University, Guangzhou 510006, China

b Key Laboratory of Theoretical Chemistry of Environment, Ministry of Education, Guangzhou

510006, China

c Guangdong Provincial Engineering Technology Research Center for Drinking Water Safety,

Guangzhou 510006, China

d Guangdong Provincial Key Lab of Functional Materials for Environmental Protection,

Guangzhou 510006, China

Tel: +86-20-39310185, Fax: +86-20-39310187

[†] Both authors contributed equally to this work

^{*} Corresponding author, E-mail: jing.wang@m.scnu.edu.cn (J. Wang)

^{*} Corresponding author, E-mail: <u>llsh@scnu.edu.cn (L. Li)</u>

Compound	Mobile phase	Wavelength
	(v/v)	(nm)
Ketoprofen	Ultra-pure water: acetonitrile =55:45	220
Sulfamethoxazole	0.1% Acetic acid solution: methanol=70:30	272
Ibuprofen	0.1% formic acid : acetonitrile=75:25	220
Ciprofloxacin	5% Acetic acid solution: methanol 68:32	278
Lincomycin	0.02 M KH ₂ PO ₄ :acetonitrile:methanol=70:15:15	206
Chlortetracycline	0.01 M oxalic acid:acetonitrile:methanol=67:22:11	274
Sulfadimethoxine	Acetonitrile:water=60:40	270
Clofibric acid	Methanol and 0.1% acetic solution =65:35	232
Bezafibrate	Methanol: acetonitrile:0.02% acetic solution =5:40:55	228
Chloramphenicol	Methanol: water=65:35	275
Sulpiride	Acetonitrile: ultra-pure water=5:95	290
Norfloxacin	0.01 M oxalic acid:acetonitrile:methanol=67:22:11	268
Trimethoprim	Acetonitrile: 0.1% formic solution=30:70	210
Tetracycline	Acetonitrile: 0.1 M oxalic acids =20:80	375
Carbamazepine	Methanol: ultra-pure water =80:20	280
Erythromycin	0.025 M phosphate: acetonitrile=40:60	210
Sulpiride	Acetonitrile: 0.1% formic solution =5:95	210
Ofloxacin	Methanol: 0.1% formic solution =5:95	278
Indomethacin	Methanol: ultra-pure water =65:35	265
Nalidixic acid	Acetonitrile: 0.1% formic solution=40:60	258
Diclofenac	Methanol:1% acetic solution=80:20	280

Table S1 HPLC condition for detecting selected PPCPs

		Fresh		Used	
Samples	Peak	Position	Area	Position	Area
		(eV)		(eV)	
	\mathbf{v}_0	880.204	50775.45	880.204	87772.99
	\mathbf{v}^{\prime}	885.043	82871.38	885.043	140447.1
	u_0	897.37	114700.1	897.37	103968.3
	u'	903.309	26068.37	903.309	43496.35
(100)	v	882.058	195758.1	882.058	194512.2
CeO _x	$\mathbf{v}^{"}$	888.121	34742.64	888.121	29644.68
	$\mathbf{v}^{\prime\prime\prime}$	898.39	69984.29	898.39	115349.5
	u	900.502	97114.5	900.502	110819.6
	u"	906.808	34826.61	906.808	29504.58
	u'''	915.976	128004.6	915.976	151754.2
	\mathbf{v}_0	880.204	41127.36	880.204	78842.38
	\mathbf{v}^{\prime}	885.043	95141.88	885.043	93804.52
	u ₀	897.37	79611.05	897.37	94481.77
	u'	903.309	25721.39	903.309	29594.04
(110)	v	882.058	141029.3	882.058	120803.6
CeO _x	\mathbf{v} "	888.121	25115.85	888.121	13808.67
	$\mathbf{v}^{\prime\prime\prime}$	898.39	70154.78	898.39	63511.02
	u	900.502	76569.78	900.502	66263.52
	u''	906.808	31571.45	906.808	23748.45
	u'''	915.976	106440.6	915.976	93835.12
(111) CeO _x	\mathbf{v}_0	880.204	49674.59	880.204	0.101
	\mathbf{v}^{\prime}	885.043	71197.57	885.043	65945.88
	u_0	897.37	69796.09	897.37	21184.06
	u'	903.309	18121.91	903.309	16354.01
	v	882.058	118140.1	882.058	137444.8
	\mathbf{v} "	888.121	17662.12	888.121	22328.07
	$\mathbf{v}^{\prime\prime\prime}$	898.39	69883	898.39	61756.55
	u	900.502	62171.24	900.502	81088.28
	u"	906.808	19654.78	906.808	19171.81
	u'''	915.976	100347.5	916.5	74319.62

Table S2 Peaks information for Ce 3d

		Fresh		Used	
Samples	Peak	Position	Area	Position	Area
		(eV)		(eV)	
(100) CeO _x	OI	528.855	192164.5	529.001	244242.5
	O_{II}	531.593	26482.17	531.693	32091.54
(110) CeO _x	O_{I}	529.102	163541.8	529.156	181440.7
	O_{II}	531.364	40216.72	531.439	75884.52
(111) CeO _x	O_{I}	529.319	115716.5	529.405	158835.7
	O_{II}	531.834	25035.03	531.834	26089.17

Table S3 Peaks information for O 1s

	k(CeO _x /O ₃)	$k(H_2O_2)$	$k(CeO_x/O_3/H_2O_2)$	η
Ketoprofen	0.015	0.001	0.074	4.43
Sulfamethoxazole	-0.112	-0.004	-0.264	2.27
Ibuprofen	-0.019	0.001	-0.039	2.21
Ciprofloxacin	-0.184	-0.010	-0.394	2.04
Lincomycin	-0.704	-0.010	-1.242	1.74
Chlortetracycline	-0.391	0.001	-0.554	1.42
Sulfadimethoxine	-0.119	-0.007	-0.176	1.40
Clofibric acid	0.024	0.002	0.036	1.39
Bezafibrate	0.059	0.000	0.081	1.36
Chloramphenicol	-0.068	-0.003	-0.085	1.21
Norfloxacin	-0.126	-0.010	-0.153	1.12
Trimethoprim	-0.137	-0.002	-0.153	1.10
Tetracycline	-0.395	-0.009	-0.422	1.05
Carbamazepine	-0.100	-0.011	-0.110	0.99
Erythromycin	-0.302	-0.001	-0.292	0.96
Sulpiride	-0.130	-0.002	-0.109	0.82
Ofloxacin	-0.096	-0.009	-0.096	0.91
Indomethacin	-0.092	-0.025	-0.101	0.86
Nalidixic acid	-0.031	-0.005	-0.032	0.88
Diclofenac	-0.216	0.000	-0.163	0.76
-				

Table S4 Reaction rate constants from first order kinetics fitting

Figure captions

Fig.S1 XRD pattern of different CeO_x;

Fig.S2 TGA of different CeO_x;

Fig.S3 Influence of calcination temperature on activity of (111) CeO_x;

Fig.S4 N₂ adsorption-desorption isotherm of different CeO_x;

Fig.S5 Heterogeneous peroxone of OA by different CeO_x with same S_{BET} dosage;

Fig.S6 •OH concentration in different $CeO_x/O_3/H_2O_2$ processes;

Fig.S7 Influence of PO₄³⁻ on heterogeneous peroxone process;

Fig.S8 Change of Ramen pattern of (100) and (110) during peroxone process;

Fig.S9 Atomic coordination of (100), (110) and (111) CeO_x;

Fig.S10 Degradation of PPCPs by (111) $CeO_x/H_2O_2/O_3$ with promotion effect; Reaction condition: pollutants concentration: 10 mg/L; catalyst dosage: 0.1 g/L; initial pH=4.2; reaction temperature: 298 K; ozone output: 100 mg/h; H₂O₂ dosage: 3.3 mg/L;

Fig.S11 Degradation of PPCPs by (111) CeO_x/H₂O₂/O₃ with similar effect;

Reaction condition: pollutants concentration: 10 mg/L; catalyst dosage: 0.1 g/L; initial pH=4.2; reaction temperature: 298 K; ozone output: 100 mg/h; H₂O₂ dosage: 3.3 mg/L;

Fig.S12 Degradation of PPCPs by (111) CeO_x/H₂O₂/O₃ with inhibition effect;

Reaction condition: pollutants concentration: 10 mg/L; catalyst dosage: 0.1 g/L; initial pH=4.2; reaction temperature: 298 K; ozone output: 100 mg/h; H₂O₂ dosage: 3.3 mg/L;

Fig.S4

Fig.S7

