Electronic Supplementary Material (ESI) for Environmental Science: Nano. This journal is © The Royal Society of Chemistry 2021

Supplementary Information

Com	D1_	D2_Sem	D3_Hetero	Metals_	SemiMetal	Electrons_	AtWt_A	MassNo_	Neutons_	IP_A	X_Ac	VWR_	Electrons_
pNo	Metal	iMetals	NonMetals	SumIP	s_SumIP	ActiveM	ctiveM	ActiveM	ActiveM	ctivM	tivM	ActivM	Activ_SM
*1	S 1	0	2	577 /	0	12	26.082	27	14	577 4	1.5	0.142	0
*1	1	0	2	5/7.4	0	13	20.982	27	14	577.4	1.5	0.145	0
2	1	0	2	577.4	0	13	26.982	27	14	577.4	1.5	0.143	0
3	1	0	2	577.4	0	13	26.982	27	14	577.4	1.5	0.143	0
4	1	0	2	577.4	0	13	26.982	27	14	577.4	1.5	0.143	0
*5	1	0	2	577.4	0	13	26.982	27	14	577.4	1.5	0.143	0
6	1	0	2	735	0	28	58.6934	59	31	735	1.8	0.124	0
7	1	0	2	735	0	28	58.6934	59	31	735	1.8	0.124	0
8	1	0	2	735	0	28	58.6934	59	31	735	1.8	0.124	0
*9	1	0	2	735	0	28	58.6934	59	31	735	1.8	0.124	0
10	1	0	2	735	0	28	58.6934	59	31	735	1.8	0.124	0
11	1	0	1	735	0	28	58.6934	59	31	735	1.8	0.124	0
12	1	0	1	904.5	0	30	65.38	65	35	904.5	1.6	0.138	0
*13	1	0	1	904.5	0	30	65.38	65	35	904.5	1.6	0.138	0
14	1	0	2	526.8	0	58	140.12	140	82	526.8	1.1	0.181	0
15	1	0	2	526.8	0	58	140.12	140	82	526.8	1.1	0.181	0
16	1	0	2	526.8	0	58	140.12	140	82	526.8	1.1	0.181	0
*17	1	0	2	526.8	0	58	140.12	140	82	526.8	1.1	0.181	0
18	1	0	2	526.8	0	58	140.12	140	82	526.8	1.1	0.181	0
19	1	0	2	526.8	0	58	140.12	140	82	526.8	1.1	0.181	0
20	1	0	2	658	0	22	47.867	48	26	658	1.5	0.147	0
*21	1	0	2	658	0	22	47.867	48	26	658	1.5	0.147	0
22	1	0	2	658	0	22	47.867	48	26	658	1.5	0.147	0
23	1	0	2	658	0	22	47.867	48	26	658	1.5	0.147	0
24	0	1	2	0	786.3	0	0	0	0	0	0	0	14
*25	0	1	2	0	786.3	0	0	0	0	0	0	0	14

Table S1 Details of MeOx (hydroxide) NP dataset.

To cont...

AtWt_	MassNo	Neutons	IP_A	X_Ac	VWR_	Electrons	AtWt_	MassNo	Neutons	IP_Ac	X_Ac	VWR_	SuM_Ac
Activ_	_Activ_	_Activ_	ctiv_	tiv_S	Activ_	_Activ_	Activ_	_Activ_	_Activ_	tiv_N	tiv_N	Activ_	tive_M_
SM	SM	SM	SM	M	SM	NM	NM	NM	NM	М	M	NM	SM
0	0	0	0	0	0	8	15.999	16	8	1314	3.5	0.074	1
0	0	0	0	0	0	8	15.999	16	8	1314	3.5	0.074	1
0	0	0	0	0	0	8	15.999	16	8	1314	3.5	0.074	1
0	0	0	0	0	0	8	15.999	16	8	1314	3.5	0.074	1
0	0	0	0	0	0	8	15.999	16	8	1314	3.5	0.074	1
0	0	0	0	0	0	8	15.999	16	8	1314	3.5	0.074	1
0	0	0	0	0	0	8	15.999	16	8	1314	3.5	0.074	1
0	0	0	0	0	0	8	15.999	16	8	1314	3.5	0.074	1
0	0	0	0	0	0	8	15.999	16	8	1314	3.5	0.074	1
0	0	0	0	0	0	8	15.999	16	8	1314	3.5	0.074	1
0	0	0	0	0	0	8	15.999	16	8	1314	3.5	0.074	1
0	0	0	0	0	0	8	15.999	16	8	1314	3.5	0.074	1
0	0	0	0	0	0	8	15.999	16	8	1314	3.5	0.074	1
0	0	0	0	0	0	8	15.999	16	8	1314	3.5	0.074	1
0	0	0	0	0	0	8	15.999	16	8	1314	3.5	0.074	1
0	0	0	0	0	0	8	15.999	16	8	1314	3.5	0.074	1
0	0	0	0	0	0	8	15.999	16	8	1314	3.5	0.074	1
0	0	0	0	0	0	8	15.999	16	8	1314	3.5	0.074	1
0	0	0	0	0	0	8	15.999	16	8	1314	3.5	0.074	1
0	0	0	0	0	0	8	15.999	16	8	1314	3.5	0.074	1
0	0	0	0	0	0	8	15.999	16	8	1314	3.5	0.074	1
0	0	0	0	0	0	8	15.999	16	8	1314	3.5	0.074	1
0	0	0	0	0	0	8	15.999	16	8	1314	3.5	0.074	1
28.085	28	14	786.3	1.8	0.132	8	15.999	16	8	1314	3.5	0.074	1
28.085	28	14	786.3	1.8	0.132	8	15.999	16	8	1314	3.5	0.074	1

To cont...

SuMElectrons_A	SuMAtWt_Act	SuMMassNo_A	SuMNeutons_A	cat_	hvdr	oxidat ion	zeta	solub ility	SSA(s	pauling	hydro xide	oxi de	L D
				luu	ation	degre	ntial		area)	gativity	Ande		H
					rate	e of							
					$\begin{pmatrix} x_n \\ 20 \end{pmatrix}$	(n ox							
					20)	y_M)							
13	26.982	27	14	67. 5	0.5	3	37	-6.5	121	1.61	1	0	1. 1
13	26.982	27	14	67. 5	0.5	3	39	-6.5	107	1.61	1	0	1. 08
13	26.982	27	14	67. 5	0.5	3	37	-6.5	62	1.61	1	0	1. 05
13	26.982	27	14	67. 5	0.5	3	33	-6.5	40	1.61	1	0	1. 07
13	26.982	27	14	67. 5	0.5	3	37	-6.5	54	1.61	1	0	1. 07
28	58.6934	59	31	83	1	2	40	-3.5	190	1.91	1	0	2. 76
28	58.6934	59	31	83	1	2	44	-3.5	226	1.91	1	0	2. 57
28	58.6934	59	31	83	1	2	31	-3.5	192	1.91	1	0	2. 99
28	58.6934	59	31	83	1	2	31	-3.5	86	1.91	1	0	2. 2
28	58.6934	59	31	83	1	2	35	-3.5	10	1.91	1	0	2. 07
28	58.6934	59	31	83	0	2	35	-12	40	1.91	0	1	0. 88
30	65.38	65	35	88	0	2	15	-2.5	93	1.65	0	1	2. 62
30	65.38	65	35	88	0	2	29	-2.5	19	1.65	0	1	2. 81
58	140.12	140	82	101	0	4	-26	-9.5	151	1.12	0	1	2. 02
58	140.12	140	82	101	0	4	-30	-9.5	52	1.12	0	1	2. 58

58	140.12	140	82	101	0	4	-35	-9.5	61	1.12	0	1	2. 08
58	140.12	140	82	101	0	4	-17	-9.5	60	1.12	0	1	0. 98
58	140.12	140	82	101	0	4	-31	-9.5	37	1.12	0	1	2. 08
58	140.12	140	82	101	0	4	9	-9.5	61	1.12	0	1	0. 82
22	47.867	48	26	74. 5	0	4	9	-9	94	1.54	0	1	0. 88
22	47.867	48	26	74. 5	0	4	1	-9	302	1.54	0	1	1. 01
22	47.867	48	26	74. 5	0	4	-4	-9	45	1.54	0	1	1. 29
22	47.867	48	26	74. 5	0	4	0	-9	44	1.54	0	1	1
14	28.085	28	14	54	0	4	-9	-2.7	326	1.9	0	1	1. 2
14	28.085	28	14	54	0	4	-29	-2.7	447	1.9	0	1	1. 09

*Presents test set compounds Me_{Ox} NPs

Additional Statistical Results

1. Test for normality of residuals and goodness of fit.

Kolmogorov –**Smirnov test** and **Shapiro-Wilk** were performed to check the normality distribution of residuals. The results obtained from the test run in SPSS show that p values are > 0.05 suggesting acceptance of H₀ i.e., residuals are normally distributed.

<u>M1</u>

Tests of Normality

	Kolmo	gorov-Smirn	IOV ^a	Shapiro-Wilk			
Ĩ	Statistic	df	Sig.	Statistic	df	Sig.	
RESIDUAL	.166	18	.200*	.901	18	.062	

*. This is a lower bound of the true significance.

a. Lilliefors Significance Correction

RESIDUAL

<u>M2</u>

Tests of Normality

	Kolmo	ogorov-Smirn	10V ^a	Shapiro-Wilk			
	Statistic	df	Sig.	Statistic	df	Sig.	
RESIDUAL	.190	18	.085	.901	18	.061	

a. Lilliefors Significance Correction

RESIDUAL

<u>M3</u>

Tests of Normality

	Kolmo	ogorov-Smirr	Nov ^a	Shapiro-Wilk			
-	Statistic	df	Sig.	Statistic	df	Sig.	
RESI	.188	18	.091	.898	18	.054	

a. Lilliefors Significance Correction

RESI

<u>M4</u>

lests of Normality

	Kolm	ogorov-Smirr	NOV	Shapiro-Wilk			
	Statistic	df	Sig.	Statistic	df	Sig.	
RESI	.163	18	.200*	.895	18	.047	

*. This is a lower bound of the true significance.

a. Lilliefors Significance Correction

RESI

2. Non multicollinearity

Further co-linearity was also checked among the descriptors obtained from the four models with the help of SPSS software. The VIF (variable inflation factor) is checked here. The value of VIF starts with 1 and has no upper limit. The value 1 indicates there is no correlation between a given predictor variable and any other predictor variable in the model. We see none VIF value is greater than 5, so multicollinearity will not be a problem here.

Coefficientsa

		Unstan Coeffi	dardized cients	Standardi zed Coefficien ts			Collinearity	Statistics
Model		В	Std. Error	Beta	t	Sig.	Tolerance	VIF
1	(Constant)	1.256	.307	22	4.094	.001	22	
	VAR00002	1.394E-03	.000	.392	3.598	.002	.996	1.005
	VAR00003	2.876E-02	.005	.653	5.321	.000	.783	1.277
	VAR00004	.197	.031	.788	6.436	.000	.786	1.272

a. Dependent Variable: VAR00005

Collinearity Diagnostics^a

			Condition		Variance F	Proportions	-
Model	Dimension	Eigenvalue	Index	(Constant)	VAR00002	VAR00003	VAR00004
1	1	3.665	1.000	.00	.01	.01	.01
	2	.185	4.453	.04	.22	.43	.06
	3	.105	5.917	.00	.08	.56	.74
	4	4.498E-02	9.027	.96	.70	.00	.19

a. Dependent Variable: VAR00005

<u>M2</u>

Coefficientsa

2		Unstand Coeffi	dardized cients	Standardi zed Coefficien ts			Collinearity	Statistics
Model		В	Std. Error	Beta	t	Sig.	Tolerance	VIF
1	(Constant)	324	.463		699	.492		
	VAR00002	5.311E-04	.000	.149	1.235	.230	.809	1.237
	VAR00003	3.630E-02	.007	.703	5.318	.000	.674	1.484
	VAR00004	.193	.030	.772	6.373	.000	.804	1.243

a. Dependent Variable: VAR00005

Collinearity Diagnostics^a

0			Condition	Variance Proportions								
Model	Dimension	Eigenvalue	Index	(Constant)	VAR00002	VAR00003	VAR00004					
1	1	3.797	1.000	.00	.01	.00	.01					
	2	.139	5.221	.00	.20	.00	.61					
	3	5.031E-02	8.687	.22	.71	.04	.28					
	4	1.331E-02	16.891	.77	.08	.96	.10					

a. Dependent Variable: VAR00005

Coefficientsa

		Unstandardized Coefficients		Standardi zed Coefficien ts Beta			Collinearity Statistics	
Model		B Std. Error	t		Sig.	Tolerance	VIF	
1	(Constant)	.125	.577		.216	.831		
200	VAR00002	3.815E-02	.006	.739	5.969	.000	.778	1.285
	VAR00003	129	.116	155	-1.116	.277	.619	1.615
	VAR00004	.174	.038	.695	4.575	.000	.517	1.934

a. Dependent Variable: VAR00005

Collinearity Diagnostics^a

			Condition	Variance Proportions				
Model	Dimension	Eigenvalue	Index	(Constant)	VAR00002	VAR00003	VAR00004	
1	1	3.843	1.000	.00	.00	.00	.01	
	2	.100	6.189	.05	.03	.00	.53	
	3	4.586E-02	9.155	.00	.12	.64	.18	
	4	1.033E-02	19.293	.95	.84	.35	.29	

a. Dependent Variable: VAR00005

<u>M4</u>

Coefficients^a

		Unstand Coeffi	Unstandardized Coefficients				Collinearity Statistics	
Model		В	Std. Error	Beta	t	Sig.	Tolerance	VIF
1	(Constant)	281	.467		602	.554		
	VAR00002	.355	.368	.131	.966	.345	.655	1.527
	VAR00003	3.675E-02	.007	.712	5.203	.000	.646	1.547
	VAR00004	.207	.031	.826	6.685	.000	.793	1.260

a. Dependent Variable: VAR00005

Collinearity Diagnostics^a

		-2	Condition	Variance Proportions			
Model	Dimension	Eigenvalue	Index	(Constant)	VAR00002	VAR00003	VAR00004
1	1	3.841	1.000	.00	.00	.00	.01
1.54	2	.104	6.086	.04	.02	.01	.94
	3	4.218E-02	9.543	.20	.83	.02	.02
-	4	1.278E-02	17.335	.76	.14	.97	.03

a. Dependent Variable: VAR00005

3. <u>No auto-correlation</u>

The Durbin Watson (DW) statistic is a test to determine autocorrelation in SPSS software. The test assumes a value between 0 to 4 and the value DW=2 indicates that there is no autocorrelation. The DW value below 2 reflects that the data is positively autocorrelated. The results obtained in the present test shows clearly that the DW value is 2.091 which means that no autocorrelation in the data.

Regression

Variables	Entered/Removed ^b
-----------	------------------------------

Model	Variables Entered	Variables Removed	Method
1	VAR00007, VAR00006, VAR00003, VAR00004, VAR00002 VAR00005	8	Enter

a. All requested variables entered.

b. Dependent Variable: VAR00001

Model Summary^b

Model	R	R Square	Adjusted R Square	Std. Error of the Estimate	Durbin-W atson
1	.876ª	.767	.689	.4176	2.091

 Predictors: (Constant), VAR00007, VAR00006, VAR00003, VAR00004, VAR00002, VAR00005

b. Dependent Variable: VAR00001

4. <u>Residual analysis</u>

Testing of error variance: One of the assumptions of ordinary least squares regression is that the variance of the residuals is homogenous across the predicted value known as homoscedasticity. If the developed model is well fitted then there should no specific pattern to the residual plot. If the variance of the error or residual is non-constant then the residual variance is said to be heteroscedastic. From the graph of MLR model M1-M4 we can see that the variance around zero is scattered and thus we can say that homoscedasticity is satisfied.

Unstandardized Predicted Value

<u>M2</u>

Unstandardized Predicted Value

> Test of normality of residuals: Linear regression has a misconception that the the outcome has to be normally distributed but the fact is that the residual needs to be normally distributed. Therefore we have performed probability plot. The plot compares the observed cumulative distribution function (CDF) of the standarized residual to the expected CDF.

M1

M2

M4

5. Inter correlation between descriptors

Correlation is a statistical technique that shows how strongly two variables are related to each other. The correlation coefficient should be within -1 to 1 to be accepted. We have checked the correlated between the descriptors in each developed MLR models and found that the descriptors in each model were not correlated.

M1

	Metals_SumIP	SuMElectrons_Active_M_SM	solubility
Metals_SumIP	1	-0.063	-0.008
SuMElectrons_Active_M_SM	-0.063	1	-0.462
solubility	-0.063	-0.462	1

M2

	Metals_SumIP	cat_rad	solubility
Metals_SumIP	1	0.402	-0.008
cat_rad	0.402	1	-0.408
solubility	-0.008	-0.408	1

M3

	cat_rad	solubility	oxidation degree of metal (n_oxy_M)
cat_rad	1	-0.408	0.045
solubility	-0.408	1	-0.58
oxidation degree of metal (n_oxy_M)	0.045	-0.58	1

M4

	D1_Metals	cat_rad	solubility
D1_Metals	1	0.558	-0.394
cat_rad	0.558	1	-0.408
solubility	-0.394	-0.408	1