Supporting Information

Constructing a brand-new advanced oxidation process system comprised of MgO₂ nanoparticles and MgNCN/MgO nanocomposites for organic pollutant degradation

Ningning Dong ^a, Doudou Wu ^a, Lifa Ge ^a, Wei Wang ^{a, *}, Fatang Tan ^a, Xinyun Wang ^a, Xueliang Qiao ^a and Po Keung Wong ^b

^a State Key Laboratory of Materials Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, Hubei, China

^b School of Life Sciences, The Chinese University of Hong Kong, Shatin, NT, Hong Kong SAR, China

* Corresponding author:

Wei Wang, Tel/fax: +86-27-87541540, E-mail: weiwang@hust.edu.cn

Preparation of individual MgNCN and MgO

MgNCN nanoparticles were prepared by calcining the mixture of thiourea and $(MgCO_3)_4 \cdot Mg(OH)_2 \cdot 5H_2O.$ Typically, 1.00 thiourea g of and 0.33 g of (MgCO₃)₄·Mg(OH)₂·5H₂O were mixed evenly in a agate mortar and the homogeneous mixture was transferred into a crucible. Subsequently, the crucible was covered with a lid and aluminum foil, and then heated from room temperature to 550 °C with a heating rate of 10 °C/min and kept at 550 °C for another 2 h in a muffle furnace. Finally, pure-phased MgNCN was obtained after cooling to room temperature. MgO was prepared by calcining (MgCO₃)₄·Mg(OH)₂·5H₂O alone followed the same procedure.

Degradation kinetics

The pseudo-first order (Eq. 1) and pseudo-second order (Eq. 2) models were used to study the kinetics of MB degradation in the MgO₂-MgNCN/MgO system under different conditions including the MgO₂ dosage, MgNCN/MgO dosage, initial solution pH and degradation temperature.

$$ln\frac{C_t}{C_0} = -k_1 t \tag{1}$$

Pseudo-first order:

Pseudo-second order:
$$\frac{1}{C_0} - \frac{1}{C_t} = k_2 t$$
 (2)

Where k_1 (h⁻¹) and k_2 (L mg⁻¹ h⁻¹) are reaction rate constants of the pseudo-first-order and pseudo-second-order models, respectively. C_0 (mg/L) is the initial concentration of MB solution, while C_t (mg/L) is the concentration of MB at the certain time t (h).

Slow-release test of MgO₂

It was well known that MgO₂ could slowly react with H₂O to release H₂O₂ (Eq. 3). The slow-release ability of MgO₂ in aqueous solution was determined by the concentration of released H₂O₂ in aqueous solution using a standard solution of potassium permanganate (KMnO₄). Specifically, 60 mg of MgO₂ was added into 300 mL of water under continuous stirring. At given time intervals, 15 mL of suspension was taken out and immediately filtered to remove solid particles. The released H₂O₂ concentration in the filtrate was quantitatively evaluated using the permanganate (0.4 mM) titration method (Eq. 4).

$$MgO_2 + 2H_2O \rightarrow Mg(OH)_2 + H_2O_2$$
(3)

$$2KMnO_4 + 5H_2O_2 + 3H_2SO_4 \rightarrow K_2SO_4 + 2MnSO_4 + 5O_2\uparrow + 8H_2O$$

$$\tag{4}$$

Oxidant utilization efficiency

To evaluate the utilization efficiency of MgO₂, 20 mg of MgO₂ nanoparticles and 10 mg of MgNCN/MgO nanocomposites were used to continuously degrade 10 mg/L MB until MB was no longer degraded. Then, the utilization efficiency of MgO₂ was obtained according to the reported method.¹ Similarly, the utilization efficiencies of common H₂O₂ and CaO₂ (equimolar active oxygen to MgO₂), activated by MgNCN/MgO (10 mg) and Fe²⁺ (46 mg of FeSO₄c37H₂O), were estimated for comparisons. Considering the difference in oxidant purity, the utilization efficiencies of oxidants were calculated based on their active oxygen content.

Figure S1. N₂ adsorption/desorption isotherms (a) and pore-size distribution (b) of MgO₂ nanoparticles.

Figure S2. XRD patterns (a), FTIR spectra (b) of MgNCN, MgO, MgNCN/MgO nanocomposites and the physical mixture of MgNCN and MgO with mass ratio of 1:1.

Figure S3. N_2 adsorption/desorption isotherms (a) and pore-size distribution (b) of MgNCN/MgO nanocomposites.

Figure S4. Survey XPS spectrum of MgNCN/MgO nanocomposites.

Figure S5. Pseudo-first-order kinetic curves of MB degradation under different conditions: MgO₂ dosage (a), MgNCN/MgO dosage (b), initial solution pH (c), and degradation temperature (d).

Figure S6. Pseudo-second-order kinetic curves of MB degradation under different conditions: MgO₂ dosage (a), MgNCN/MgO dosage (b), initial solution pH (c), and degradation temperature (d).

Figure S7. Comparative experiments of MB degradation with different activators (Reaction conditions :

100 mL of 10 mg/L MB, 20 mg of MgO_2 , 10 mg of activator).

Figure S8. Effects of initial MB concentration on MB degradation (Reaction conditions: 100 mL of MB solution, 20 mg of MgO₂, 10 mg of MgNCN/MgO).

Figure S9. Linear curves fitted by pseudo-zero-order kinetic (a), pseudo-first-order kinetic (b) and pseudosecond-order kinetic (c) models for the H₂O₂ release from MgO₂.

Figure S10. Mg²⁺ concentrations released from the MgO₂-MgNCN/MgO system (Reaction conditions: 100 mL of 10 mg/L MB, 20 mg of MgO₂, 10 mg of MgNCN/MgO).

Figure S11. XRD patterns (a) and FTIR spectra (b) of MgO₂, MgNCN/MgO and solid residue after 5 runs

of MB degradation.

Figure S12. Effect of exposure time of MgO_2 on MB degradation (Reaction conditions:100 mL of 10 mg/L

MB, 20 mg of MgO_2 with different exposure time, 10 mg of MgNCN/MgO).

Parameters		Pseudo-first order model		Pseudo-second order	Pseudo-second order model		
		K ₁ (h ⁻¹)	R_1^2	$K_2 (L mg^{-1} h^{-1})$	R_2^2		
	5	0.120	0.969	0.110	0.949		
MgO ₂	10	0.473	0.979	1.092	0.726		
dosage (mg)	20	0.872	0.985	57.871	0.455		
	30	1.120	0.974	79.071	0.486		
	2	0.210	0.988	0.279	0.928		
MaNCN/MaO	5	0.437	0.967	1.315	0.748		
dosage	10	0.872	0.985	15.558	0.678		
(mg)	15	0.897	0.990	18.295	0.714		
	20	0.853	0.983	13.135	0.667		
	4	0.725	0.986	6.782	0.719		
	6	0.783	0.982	9.459	0.687		
Initial solution pH	8	0.706	0.963	5.995	0.634		
	10	0.558	0.971	2.540	0.716		
	12	1.033	0.988	39.616	0.765		
	15	0.098	0.903	0.085	0.861		
T (°C)	25	0.872	0.985	15.558	0.678		
	35	1.368	0.982	111.117	0.717		

Table S1. Kinetic parameters of MB degradation in the MgO₂-MgNCN/MgO system under different conditions

Degradation system	Catalyst (g/L)	Oxidant (mM)	MB (mg/L)	pH range	Degradation efficiency (%)	References
MgO ₂ +MgNCN/MgO	0.1	3.6	10	4-12	>98	This work
H ₂ O ₂ +FePC	0.5	1	100	2-5	>90	2
H ₂ O ₂ +MPCMSs+ NH ₂ OH	2	16	40	3.1-9.6	>40	3
H_2O_2 +Fe ₃ O ₄ @MnO ₂	0.3	30	40	2-9	>30	4
H_2O_2 +Fe ₂ GeS ₄	0.3	50	20	3-11	>40	5
H ₂ O ₂ +g-C ₃ N ₄ /CDs/Fe(II)	0.5	1	60	3-9	>60	6
H_2O_2 +Nb ₂ O ₅	1	441.2	37.5	5	100	7
H ₂ O ₂ +PCN-250 (Fe2Mn)	0.5	4000	15	natural	100	8
MgO ₂ +Fe ₂ (SO ₄) ₃ ·xH ₂ O	0.1	0.9	20	2-10	>90	9
PMS+BC-CuO	0.2	2	37.4	3-11	>80	10
PMS+Elbaite	1	0.7	5	2-12	>30	11

 Table S2. Comparison of the capacities of other AOP systems for MB degradation.

No.	Substance	Concentration
1	Ammonia nitrogen (mg/L)	□0.02
2	Cyanogen chloride (mg/L)	□0.01
3	Atrazine (mg/L)	□0.0001
4	1.2-dichlorobenzene (mg/L)	□0.001
5	Chlorobenzene (mg/L)	□0.001
6	α -1,2,3,4,5,6-Hexachlorocyclohexane (µg/L)	\leq 0.000002
7	Parathion (mg/L)	□0.001
8	2,4,6-trichlorophenol (mg/L)	□0.0005

 Table S3. Water quality of tap water.

No.	Standard value Project	vater	Yangtze River	East lake and Han River	Moon lake
1	рН			6 ~ 9	
2	Dissolved oxygen	2	6	5	3
3	Permanganate Index (mg/L)) <	4	6	10
4	COD (mg/L)	\leq	15	20	30
5	BOD ₅ (mg/L)	\leq	3	4	6
6	NH ₃ -N (mg/L)	\leq	0.5	1.0	1.5
7	Total phosphorus (mg/L)	\leq	0.1	0.2	0.3
8	Total nitrogen (mg/L)	\leq	0.5	1.0	1.5
9	Cu (mg/L)	\leq	1.0	1.0	1.0
10	Zn (mg/L)	≤	1.0	1.0	2.0
11	F ⁻ (mg/L)	\leq	1.0	1.0	1.5
12	Se (mg/L)	\leq	0.01	0.01	0.02
13	As (mg/L)	≤	0.05	0.05	0.1
14	Hg (mg/L)	≤	0.00005	0.0001	0.001
15	Cd (mg/L)	\leq	0.005	0.005	0.005
16	Cr ⁶⁺ (mg/L)	\leq	0.05	0.05	0.05
17	Pb (mg/L)	\leq	0.01	0.05	0.05
18	Cyanide (mg/L)	\leq	0.05	0.2	0.2
19	Volatile Phenol (mg/L)	\leq	0.002	0.005	0.01
20	Petroleum (mg/L)	≤	0.05	0.05	0.5
21	Anionic Surfactant (mg/L)	≤	0.2	0.2	0.3
22	Sulfide (mg/L)	≤	0.1	0.2	0.5
23	Fecal coliforms (CFU/L)	≤	2000	10000	20000

Table S4. Water quality of different types of surface water.

References

- X. Yang, J. Cai, X. Wang, Y. Li, Z. Wu, W. D. Wu, X. D. Chen, J. Sun, S. P. Sun and Z. Wang, A bimetallic Fe-Mn oxide-activated oxone for in situ chemical oxidation (ISCO) of trichloroethylene in groundwater: efficiency, sustained activity, and mechanism investigation, *Environ. Sci. Technol.*, 2020, 54, 3714-3724.
- C. Ma, S. Feng, J. Zhou, R. Chen, Y. Wei, H. Liu and S. Wang, Enhancement of H₂O₂ decomposition efficiency by the co-catalytic effect of iron phosphide on the Fenton reaction for the degradation of methylene blue, *Appl. Catal. B: Environ.*, 2019, 259, 118015.
- L. Zhou, Y. Shao, J. Liu, Z. Ye, H. Zhang, J. Ma, Y. Jia, W. Gao and Y. Li, Preparation and characterization of magnetic porous carbon microspheres for removal of methylene blue by a heterogeneous Fenton reaction, *ACS Appl. Mater. Interfaces*, 2014, 6, 7275-7285.
- L. Wolski, A. Walkowiak and M. Ziolek, Formation of reactive oxygen species upon interaction of Au/ZnO with H₂O₂ and their activity in methylene blue degradation, *Catal. Today*, 2019, **333**, 54-62.
- X. Shi, A. Tian, J. You, H. Yang, Y. Wang and X. Xue, Degradation of organic dyes by a new heterogeneous Fenton reagent-Fe₂GeS₄ nanoparticle, *J. Hazard. Mater.*, 2018, 353, 182-189.
- X. Li, Y. Pi, L. Wu, Q. Xia, J. Wu, Z. Li and J. Xiao, Facilitation of the visible lightinduced Fenton-like excitation of H₂O₂ via heterojunction of g-C₃N₄/NH₂-Iron terephthalate metal-organic framework for MB degradation, *Appl. Catal. B: Environ.*, 2017, 202, 653-663.
- L. Wolski and M. Ziolek, Insight into pathways of methylene blue degradation with H₂O₂ over mono and bimetallic Nb, Zn oxides, *Appl. Catal. B: Environ.*, 2018, **224**, 634-647.
- A. Kirchon, P. Zhang, J. Li, E. A. Joseph, W. Chen and H. C. Zhou, Effect of isomorphic metal substitution on the Fenton and photo-Fenton degradation of methylene blue using Fe-based metal-organic frameworks, *ACS Appl. Mater. Interfaces*, 2020, 12, 9292-9299.
- D. Wu, Y. Bai, W. Wang, H. Xia, F. Tan, S. Zhang, B. Su, X. Wang, X. Qiao and P. K. Wong, Highly pure MgO₂ nanoparticles as robust solid oxidant for enhanced Fenton-like degradation of organic contaminants, *J. Hazard. Mater.*, 2019, **374**, 319-328.

- Z. Li, D. Liu, W. Huang, X. Wei and W. Huang, Biochar supported CuO composites used as an efficient peroxymonosulfate activator for highly saline organic wastewater treatment, *Sci. Total Environ.*, 2020, **721**, 137764.
- C. Yu, M. Wen, S. Li, Z. Tong, Y. Yin, X. Liu, Y. Li, Z. Wu and D. D. Dionysiou, Elbaite catalyze peroxymonosulfate for advanced oxidation of organic pollutants: Hydroxyl groups induced generation of reactive oxygen species, *J. Hazard. Mater.*, 2020, **398**, 122932.