Supplementary information

One-step Biosynthesis of Bilayered Graphene Oxide Embedded Bacterial

Nanocellulose Hydrogel for a Versatile Photothermal Membrane Applications

Govindaraj Divyapriya,^{ab} Asifur Rahman,^{ab} Weinan Leng,^{ab} Wei Wang,^{ab} and Peter J. Vikesland*^{ab}

Affiliations:

^a Department of Civil and Environmental Engineering, Virginia Tech, Blacksburg, Virginia, USA

^b Virginia Tech Institute of Critical Technology and Applied Science (ICTAS), Sustainable Nanotechnology Center (VTSuN), Blacksburg, Virginia, USA

Summary: Total 11 pages with 9 figures and 2 tables

Fig. S1. Photographic images of BNC hydrogels obtained with the growth medium supplemented with CSL of 100, 125, 150 mL/L and 0.05 wt% of GO.

Fig. S2. Photographic images of rGO/BNC:BNC hydrogels obtained with the growth medium supplemented with GO of 0.025 (G1), 0.05 (G2), 0.075 (G3) wt% and CSL of 20 mL/L.

Fig. S3. SEM morphology of rGO/BNC membrane (a) top surface and (b) cross section, top surface morphology of rGO/BNC:BNC membranes (c) M2 and, (d) M3.

Fig. S4. TGA analysis of membranes G1 – G3.

Fig. S5. Size distribution of AuNPs obtained using DLS containing the average diameter of (a) \sim 20.6 nm and, (b) \sim 4.2 nm.

Fig. S6. Calibration curves for AuNPs of (a) 20 nm and (b) 4 nm.

Fig. S7. G1 membranes immersed at different pH solutions (a) before and (b) after ultrasonication for 2 h.

Fig. S8. SEM, TGA and photothermal properties of GO

Fig. S9. Steam generation rate at the periodic interval of 15 min

Table S1: Summary of the ultrafiltration performance of different GO/rGO supported polymeric

 membranes in removing bacteria

Membrane	Optimum loading of GO	Applied pressure (psi)	Water flux (L h ⁻¹ m ⁻²)	Rejection (%) (E.coli)	Inactivation (%)	Reference
rGO/Polyacrylonitrile	0.22 wt%	29	121	-	Zone of inhibition of E.coli 0.12 mm)	1
Hyperbranched polyethylenimine (HPEI) functionalized GO/polyethersulfone	3 wt%	14.5	165	-	74.88% (Initial conc. of E.coli 10 ⁶ CFU/mL)	2
GO/polyethersulfone (electrochemical mechanism)	0.25 mg cm ⁻² of GO	14.5	100	99.99	95% (Initial conc. 10 ⁶ CFU/mL of mixed bacterial culture) for 2V	3
Guanidyl- functionalized graphene/polysulfone	0.5 wt%	29	217	-	-	4
Ag-GO/ polyvinylidene fluoride (PVDF)	0.3 wt%	3	348.8	99.97%	94.7% (Initial conc. Of Bacillus subtilis 6.2×10 ⁶ CFU/mL)	5
Ag/rGO/ polyethersulfone	0.2 wt%	43.5	429.8	-	-	6
Ag/GO/ polysulfone	0.5 wt%	29	87	-	-	7
rGO/Bacterial nanocellulose (Photothermal effect)	0.05 w/v% of GO in bacterial growth medium	30	149	100%	100% (Initial conc. of E.coli ~2.0 × 10 ⁷ CFU/mL)	Present study

Photothermal material	Supporting membrane/foam material	Solar illumination (kW m ⁻²)	Maximum temperature (°C)	Evaporation rate	Reference
rGO	Polyurethane	1.0	47.0	1.37	8
GO/Carbon nanotubes	silica Janus nanofibrous membrane	1.0	40.6	1.3	9
Activated carbon/GO/Multiwal led carbon nanotubes	PVDF membrane attached on the polystyrene foam embraced by cellulose sponge	1.0	45	1.55	10
Ag/rGO	melamine sponge skeleton	1.0	44.9	1.21	11
GO	halloysite nanotubes	1.0	39.1	1.62	12
rGO	Bacterial nanocellulose foam	0.6	56.9	1.95	Present study

Table S2: Summary of solar steam generation in different GO/rGO based polymeric support membranes/foams

Reference

- 1 B. Fryczkowska, A. Machnicka, D. Biniaś, C. Ślusarczyk and J. Fabia, *Membranes* (*Basel*)., 2020, **10**, 58.
- 2 L. Yu, Y. Zhang, B. Zhang, J. Liu, H. Zhang and C. Song, *J. Memb. Sci.*, 2013, 447, 452–462.
- 3 A. K. Thakur, S. P. Singh, C. Thamaraiselvan, M. N. Kleinberg and C. J. Arnusch, J. *Memb. Sci.*, 2019, **591**, 117322.
- 4 G. Zhang, M. Zhou, Z. Xu, C. Jiang, C. Shen and Q. Meng, *J. Colloid Interface Sci.*, 2019, **540**, 295–305.
- 5 K. Ko, Y. J. Yu, M. J. Kim, J. Kweon and H. Chung, *Sep. Purif. Technol.*, 2018, **194**, 161–169.
- 6 V. Vatanpour, A. Shockravi, H. Zarrabi, Z. Nikjavan and A. Javadi, 2015, **30**, 342–352.
- 7 F. A. A. Ali, J. Alam, A. K. Shukla, M. Alhoshan, M. A. Ansari, W. A. Al-Masry, S. Rehman and M. Alam, *React. Funct. Polym.*, 2019, **140**, 136–147.
- 8 G. Cheng, X. Wang, X. Liu, Y. He and B. V. Balakin, *Sol. Energy*, 2019, **194**, 415–430.
- 9 L. Li, L. Zang, S. Zhang, T. Dou, X. Han, D. Zhao, Y. Zhang, L. Sun and Y. Zhang, *J. Taiwan Inst. Chem. Eng.*, 2020, **111**, 191–197.
- 10 C. Liu, X. Li, R. Li, Q. Yang, H. Zhang, B. Yang and G. Yang, *Carbon N. Y.*, 2020, **166**, 138–147.
- 11 K. Wang, D. Y. Wang, M. Z. Wang, X. X. Dan, L. M. Che, H. H. Xu, H. Zhou, H. Liu, L. Singh and X. E. Wu, Sol. Energy Mater. Sol. Cells, 2020, 204, 110203.
- 12 M. Xia, L. Chen, C. Zhang, Q. M. Hasi, Z. Li and H. Li, *Appl. Clay Sci.*, 2020, **189**, 105523.