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Tables

Table SI-1. Elemental analysis of the bottled water matrix (Fastio®) used in the study

Table SI-2 gathers the mathematical equations used in the kinetic modelling of the 

sorption data. qt is the amount of metal sorbed per gram of sorbent at given time t (μg 

g−1), qe amount of metal adsorbed per gram of materials at equilibrium (μg g−1), k1 is the 

Bottled water (Fastio®)
Initial pH = 6.2

Major elements
(mg L-1)

Minor elements
(µg L-1)

Ca 1.3 B 20
Na 4.1 Al 50
K 0.6 Cr 1.3

Mg 0.7 Fe 61
P 0.4 Co < 1
Si 0.8 Ni < 1
Cl 4.2 Cu 3.1

Zn 20
As < 2
Se < 1
Sr 6.3
Cd <0.1
Sb < 0.1
Ba 3.1
Pb < 0.1
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rate constant of pseudo-first order (h−1), k2 rate constant of pseudo-second order (g μg−1 

h−1), α initial sorption rate (μg g−1 h−1), β desorption constant (g μg−1).

Table SI-2. Sorption reaction kinetic models and corresponding mathematical equations used in 

the study.
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Boyd’s film-diffusion 4 and Webber’s pore-diffusion 5 were applied to study the diffusion 

mechanism and which rate-controlling step drives the process. 

The film-diffusion model presented by Boyd states that the main opposition to diffusion 

is in the boundary layer surrounding the sorbent particle 6,7, expressed as:
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where F is the fractional attainment of equilibrium, at different times, t, and Bt is a 

function of F:

                                                               (5)t

e

qF
q



Bt can be calculated as:

For F values > 0.85  (6) 0.4977 ln 1Bt F   

For F values < 0.85 (7)
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If the Boyd’s plot (Bt vs t) excludes the origin, the film diffusion or chemical reaction 

must be the rate-controlling step, whereas if the plot is linear and passes through the 

origin, it is the intraparticle-diffusion that mostly controls the rate of mass transfer.

Weber’s intraparticle-diffusion model is defined by the equation 6,7 : 
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in which ki is the intraparticle-diffusion parameter (mg g-1 h-1/2). If a plot of qt vs t is a 

straight line with a slope that equals ki and an intercept equal to zero, the intraparticle-

diffusion must be the rate-limiting step. If not, there must be another mechanism along 

with intraparticle diffusion must be considered. To analyse the experimental data under 

the film-diffusion and the intraparticle-diffusion models, and to predict the corresponding 

diffusion coefficients, a piecewise linear regression methodology (PLR), proposed by 

Malash et al. 6, was performed using a Microsoft® ExcelTM worksheet developed by these 

authors.

Figures

Fig. S1 – A) wet cyclic compression mechanical test (25 % strain) up to 1000 cycles, B) inset on 

the initial linear part of the plot for the calculation of Young Modulus. 
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Fig. S2 – SEM micrographs of the several samples studied in this work. A) MS, B) MSGOPEI3, 

C) Alg, D) MSGOPEI3-Alg, E) GOPEI and F) GOPEI-Alg.
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Fig. S3 – CT scan of A) MS sample, B) digital cross-section of MS, C) MSGOPEI3-Alg and D) 

digital cross-section of MSGOPEI3-Alg. This technique allowed to verify of the distribution of 

GOPEI-Alg layers (pointed out with the red arrows) throughout the entire volume of the 

MSGOPEI3 dices.
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Fig. S4 – Water vapor sorption isotherms for the several samples studied.
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