Electronic Supplementary Material (ESI) for Environmental Science: Nano. This journal is © The Royal Society of Chemistry 2021

Gut-microbial adaptation and transformation of silver nanoparticles mediated the detoxification of *Daphnia magna* and offsprings

Yingdong Li^{1,2}, Wen-Xiong Wang^{3*}, Hongbin Liu^{1,2,4*}

¹Department of Ocean Science, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China

²Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, China

³School of Energy and Environment, State Key Laboratory of Marine Pollution, Hong Kong Branch of Southern Marine Science and Engineering Guangdong Laboratory, City University of Hong Kong, Kowloon, Hong Kong, China

⁴Hong Kong Branch of Southern Marine Science and Engineering Guangdong Laboratory, The Hong Kong University of Science and Technology, Hong Kong, China

Keywords: Metatranscriptomic analysis, Zooplankton, *Daphnia magna*, Gut microbe, Ag nanoparticles

*AUTHOR FOR CORRESPONDENCE: Hongbin Liu, <u>liuhb@ust.hk;</u> Wen-Xiong Wang, <u>wx.wang@cityu.edu.hk</u>

Materials and Methods Synthesis and characterization of AgNPs

Citrate-capped AgNPs (20 nm) were prepared as described previously ¹. NaBH₄ (5 mM, 6 mL) was added to a solution containing AgNO₃ (100 mM, 250 μ L) and citrate (100 mM, 250 μ L) to give a total volume of 100 mL, and stirred vigorously for 30 min. The resulting yellow solution was stirred for another 30 min, after which the resulting AgNPs that were synthesized, were purified by ultrafiltration (Amicon Ultra15 3 K, Millipore, MA) to remove the soluble by-products. This stock suspension of AgNPs was stored at 4°C prior to use. These AgNPs were characterized via transmission electron microscopy (TEM) (Fig. S1).

Validating the toxicity of AgNPs and Ag⁺

Zooplankton were exposed to AgNPs or Ag⁺ to verify their toxicity and calculate the lethal concentration for 50% of *D. magna* within 48 h (i.e., 48 h LC₅₀). In brief, the guts of the *D. magna* were evacuated for 30 min, after which the zooplankton were transferred into a beaker containing either AgNPs or Ag⁺ at a density of one individual per 10 mL. Four replicates were used in each treatment. *D. magna* were exposed to ADaM medium only (control), or they were treated with AgNPs at 0.1, 0.5, 0.75, 0.85, 1, 1.5, 2, 3, 4, 5, 9, 10, 15 or 20 μ g L⁻¹ or Ag⁺ at 0.1, 0.5, 0.75, 1, 1.25, 1.5, 1.75 or 2 μ g L⁻¹. The number of surviving *D. magna* was then recorded after exposure to AgNPs or Ag⁺ for 48 h. The 48 h LC₅₀ of *D. magna* for these different treatments was then calculated using the trimmed Spearman-Kärber method, based on the actual concentration of AgNPs or Ag⁺.

Preparation of axenic D. magna cultures

D. magna was made into an axenic culture using antibiotics according to previous reports ². In brief, control *D. magna* eggs in their external membrane, were treated with 0.25% ampicillin (Sigma, Germany) for 30 min to remove all associated bacteria. Then, 5% of the eggs were selected at random and crushed into detritus before being filtered through a 0.22 μ m membrane for PCR detection of any remaining bacteria. The remaining eggs were rinsed with sterile ADaM to remove any remaining ampicillin and then transferred to a sterile six-well plate for inoculation with the prepared microflora as well as hatching.

Respiration rate measurement

Individual *D. magna* were weighed and then enclosed in a 200 μ L 24-well glassbottom multiplate. After a 10 min period of acclimation, the concentration of oxygen in the incubation chambers was recorded (mg L⁻¹) at 15-sec intervals for 6 h using an SDR SensorDish[®] Reader. The oxygen consumption was calculated as the linear slope of the change in O₂ over time during the incubation period (all linear regressions were significant P < 0.0001). These respiration rates were corrected against a control chamber filled with zooplankton-free water and normalized with the weight of each individual.

WGCNA procedures

First, the hierarchical clustering of samples was analyzed using the flashClust function based on the gene expression profile in WGCNA. The average connectivity degrees of different modules and their independence were then tested using the pickSoftThreshold function with a set of candidate powers (ranging between 1 and 30). A suitable power value was selected if the degree of independence was >0.9. The WGCNA algorithm was then performed to construct the hierarchical clustering tree of genes, and those with high topological overlap similarity (i.e., not less than 10), were clustered into different co-expression modules. Finally, we calculated the eigengene (the average expression level of all genes in each co-expression module), hierarchically clustered the modules, and merged similar modules (abline = 0.25).

Reference:

- 1. Yan, N.; Tang, B. Z.; Wang, W.-X., In vivo bioimaging of silver nanoparticle dissolution in the gut environment of zooplankton. *ACS nano* **2018**, *12*, (12), 12212-12223.
- Li, Y.; Yan, N.; Wong, T. Y.; Wang, W.-X.; Liu, H., Interaction of antibacterial silver nanoparticles and microbiota-dependent holobionts revealed by metatranscriptomic analysis. *Environmental Science: Nano* 2019, 6, (11), 3242-3255.

Table S1 Primers for qPCR detection

Gene	Forward (5'-3')	Reverse (5'-3')	Affiliation
dsrA (dissimilatory sulfite	ACSCACTGGAAGCACG	GTGGMRCCGTGCAKRTT	Gut
reductase alpha subunit)	CCGG	GG	microbiota
butyryl-CoA CoA transferase	GCIGAICATTTCACITGG	CCTGCCTTTGCAATRTCI	Gut
	AAYWSITGGCAYATG	ACRAANGC	microbiota
narG (nitrate reductase / nitrite	TAYGTSGGGCAGGARA	CGTAGAAGAAGCTGGT	Gut
oxidoreductase, alpha subunit)	AACTG	GCTGTT	microbiota
<i>nirK</i> (nitrite reductase)	TCATGGTGCTGCCGCG	GAACTTGCCGGTKGCCC	Gut
	KGACGG	AGAC	microbiota
GAPDH (glyceraldehyde 3-	CCTGCCAAGTATGATG	AGCCCAGGATGCCCTTT	Gut
phosphate dehydrogenase)	ACATCAA	AGT	microbiota
16S rRNA	TCCTACGGGAGGCAGC	GGACTACCAGGGTATCT	Gut
	AGT	AATCCTGTT	microbiota

	Assigned to host library	Assigned to bacterial	Shared	Unassigned
Samples	(% reads from	library (% reads from	(% reads from	(% reads from
-	holobiont)	holobiont)	holobiont)	holobiont)
Normal-1	72.22	16.37	1.87	9.54
Normal-2	70.92	16.74	1.25	11.09
Normal-3	74.28	16.93	1.45	7.34
Low Ag-1	77.20	14.55	1.68	6.57
Low Ag-2	79.56	9.22	1.99	9.23
Low Ag-3	74.25	14.90	2.11	8.74
High Ag-1	85.17	0.08	0	14.75
High Ag-2	81.49	0.10	0	18.41
High Ag-3	80.71	0.13	0	19.16
F1 low Ag-1	90.11	0.15	0	9.74
F1 low Ag-2	88.27	0.06	0	11.67
F1 low Ag-3	85.04	0.05	0	14.91
F3 low Ag-1	75.45	14.98	3.45	6.12
F3 low Ag-2	75.77	13.71	4.78	5.74
F3 low Ag-3	79.85	11.87	4.11	4.17
DOM-1	73.39	9.78	6.51	10.32
DOM-2	69.18	10.14	7.21	13.47
DOM-3	67.27	9.62	8.22	14.89
DOM-Ag-1	60.64	18.64	9.45	11.27
DOM-Ag-2	58.14	19.17	8.21	14.48
DOM-Ag-3	60.24	17.92	7.69	14.15
DOM-AgNPs-1	64.68	17.64	8.81	8.87
DOM-AgNPs-2	66.73	16.48	5.14	11.65
DOM-AgNPs-3	61.34	19.15	6.54	12.97

Table S2 Disentangling the results for the holobiont system

Sample	Base number (Gb)	Raw reads	Clear reads
Normal-1	37.42	113,581,610	113,578,438
Normal-2	35.66	102,373,718	102,371,140
Normal-3	36.28	109,114,324	103,112,170
Low Ag-1	28.32	71,704,2032	71,682,274
Low Ag-2	34.28	97,305,120	97,288,722
Low Ag-3	36.38	10,857,398	10,841,168
High Ag-1	36.14	105,978,704	105,765,148
High Ag-2	26.42	73,809,582	73,754,428
High Ag-3	36.16	106,604,802	106,577,722
FLAg-1	42.04	118,324,904	118,285,154
FLAg-2	32.22	91,997,456	91,975,422
FLAg-3	50.06	140,721,142	139,551,374
TLAg-1	38.08	108,365,374	108,132,654
TLAg-2	28.24	81,319,188	81,118,454
TLAg-3	44.26	127,019,062	126,556,878
DOM-1	30.04	85,389,630	85,153,331
DOM-2	28.07	79,743,122	79,354,784
DOM-3	42.11	119,921,154	119,431,312
DOM-Ag-1	36.67	104,811,922	104,633,646
DOM-Ag-2	30.15	86,112,456	85,803,112
DOM-Ag-3	36.41	104,974,388	104,674,214
DOM-AgNPs-1	36.17	102,793,422	102,453,312
DOM-AgNPs-2	36.24	102,822,314	102,514,334
DOM-AgNPs-3	42.12	119,961,368	119,633,112

Table S3 Illumina sequencing statistics of mRNA dataset

Sample	N50		N50	Coding regions
	(Daphnia)	Coding regions (Daphnia)	(Gut bacteria)	(Gut bacteria)
Normal-1	1,842	95,897	1,174	17,712
Normal-2	1,733	93,987	1,038	15,573
Normal-3	1,697	94,113	974	16,635
TLAg-1	1329	74,821	725	12,304
TLAg-2	1,398	83,521	744	10,963
TLAg-1	1,266	72,327	511	9,347
FLAg-1	1,369	80,354	-	54
FLAg-2	1,442	84,154	-	30
FLAg-3	1,310	81,327	-	11
High Ag-1	1,424	84,233	-	24
High Ag-2	1,382	81,354	-	37
High Ag-3	1,354	83,665	-	19
Low Ag-1	1,381	80,512	625	19,091
Low Ag-2	1,457	82,118	611	15,211
Low Ag-3	1,416	85,682	574	18,719
DOM-1	2,353	75,913	1,324	22,993
DOM-2	2,113	73,441	1,027	19,347
DOM-3	2,621	77,335	1,434	24,334
DOM-Ag-1	3,651	81,567	1,967	27,487
DOM-Ag-2	3,447	79,396	2,074	26,311
DOM-Ag-3	3,761	82,334	2,133	28,673
DOM-AgNPs-1	4,512	86,754	2,164	28,679
DOM-AgNPs-2	4,932	87,245	2,278	30,348
DOM-AgNPs-3	4,785	86,819	2,184	28,688

Table S4 Summary of assembly

Figure S1. TEM examination of the AgNPs synthesized (A), and graph showing the average particle size of the AgNPs with the line represent a best fit curve (B).

Figure S2. The toxicity of AgNPs and Ag^+ to *D. magna* (A), and the concentration of Ag^+ released during the dissolution of AgNPs over a period of 180 h (B).

Figure S3. The oxygen consumption rate of zooplankton under multi-generational exposure of silver ion or AgNPs. ** indicates the significant differences (p<0.01) in T-test between two comparison groups.

Figure S4. The biological coefficient of variation (BCV) of the transcriptomic data affiliated to *D. magna* (A), and the gut microbiota (B), using normalized gene expression counts for each experimental group.

Figure S5. qPCR verification of the expression of selected genes in the gut microbiota.

Figure S6. The ingestion rate of *D. magna* exposed to AgNPs and Ag⁺.

Figure S7. The neutral community model (NCM) based calculation of gut microbial community from different treatments.

Figure S8. The Bray-Curtis similarity between gut-microbial communities

Figure S9. The cladogram indicates the phylogenetic distribution (at family level) of the gut microbial lineages between first generation low AgNPs and third generation low AgNPs (A), and first generation low Ag^+ and third generation low Ag^+ (B).

Figure S10. The gut-microbial community similarity between this study and other studies.

Figure S11. The weighted gene co-expression network analyses of gut microbiota and *D. magna*. Cluster dendrograms showing the expression pattern of gut microbiota affiliated genes in the different metabolic modules (A). WGCNA demonstrating the correlation between calculated metabolic modules and experimental conditions for gut microbiota (B), and the gut microbial metabolic modules that were positively correlated with the reproduction rate of zooplankton were highlighted with red pentagram. Heatmaps for the number of genes clustered into different metabolic modules in the metabolic category level for gut microbiota (C).

Figure S12. The microbial community composition at phylum and class level for proteobacteria with community similarities among samples for recipient with AgNPs-adapted gut-microbiota (A) and Ag⁺-adapted gut-microbiota (B) based on the UPGMA clustering with the abundance of 16S ASVs. The cluster dendrograms were constructed based on Bray-Curtis similarity using vegan package in R.

Figure S13. The differentially expressed genes for carbohydrate-active enzymes (CAZymes). Auxiliary Activities (AA): redox enzymes that act in conjunction with CAZymes; Carbohydrate-Binding Modules (CBM): adhesion to carbohydrates; Carbohydrate Esterases (CE) : hydrolysis of carbohydrate esters; Glycoside Hydrolases (GH) : hydrolysis and/or rearrangement of glycosidic bonds; GlycosylTransferases (GT) : formation of glycosidic bonds; Polysaccharide Lyases (PL) : non-hydrolytic cleavage of glycosidic bonds.