## **Supporting Information**

Title: Silica nanomaterials and earthworms synergistically regulate maize root metabolite profiles via promoting soil Si bioavailability

Weisheng Ma<sup>a, b, c</sup>, Le Yue<sup>a, b, c</sup>, Feiran Chen<sup>a, b, c</sup>, Haihua Ji<sup>a, b, c</sup>, Ningke Fan<sup>a, b, c</sup>,

Manqiang Liu<sup>d</sup>, Zhenggao Xiao<sup>a, b, c, \*</sup> and Zhenyu Wang<sup>a, b, c, \*</sup>

<sup>a</sup> Institute of Environmental Processes and Pollution Control, and School of Environmental and Civil Engineering, Jiangnan University, Wuxi 214122, China

<sup>b</sup> Jiangsu Engineering Laboratory for Biomass Energy and Carbon Reduction Technology, Jiangnan University, Wuxi 214122, China

<sup>c</sup> Jiangsu Key Laboratory of Anaerobic Biotechnology, Jiangnan University, Wuxi
 214122, China

<sup>d</sup> Soil Ecology Lab, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, China

\*Corresponding author.

E-mail address: zhenggao.xiao@jiangnan.edu.cn (Dr. Z. Xiao),

wang0628@jiangnan.edu.cn (Dr. Z. Wang)

#### Dissolution of SiO<sub>2</sub> NMs in liquid culture medium

The fastest growing colony of SSB isolated from earthworm cast was selected to assess the Si release from SiO<sub>2</sub> NMs in an *in vitro* experiment. Erlenmeyer flasks (250 mL) with 100 mL of culture medium (1% sucrose, 0.05% yeast extract, 0.1%  $(NH_4)_2SO_4$ , 0.2% Na<sub>2</sub>HPO<sub>4</sub>, 0.05% MgSO<sub>4</sub>·7H<sub>2</sub>O, 0.01% NaCl, 0.01% CaCO<sub>3</sub>, 10 mg L<sup>-1</sup> SiO<sub>2</sub> NMs, pH 7.2) were inoculated with the SSB (final cell concentration in medium was 10<sup>6</sup> CFU mL<sup>-1</sup>).<sup>1</sup> Uninoculated medium containing SiO<sub>2</sub> NMs served as control. Each treatment was replicated three times. The flasks were incubated on an incubator shaker at 180 r min<sup>-1</sup> for seven days at 30 °C. After seven days, the culture suspension was centrifuged at 8000 r min<sup>-1</sup> for 15 min and the soluble Si in the supernatant was estimated by the colorimetric molybdenum blue method.<sup>2</sup>

| NMs                                        | Zeta potential (mV)        | Hydrodynamic diameter (nm) |
|--------------------------------------------|----------------------------|----------------------------|
| 10 mg L <sup>-1</sup> SiO <sub>2</sub> NMs | $\textbf{-17.28} \pm 0.65$ | $407.86\pm28.92$           |

Table S1. Zeta potential and hydrodynamic diameter of  $SiO_2$  NMs in ultrapure water.

| Gene     | Primer  | Sequence (5' to 3')      | Reference                           |
|----------|---------|--------------------------|-------------------------------------|
| ZmLsil   | Forward | GATCCAGGTCCCGTTCTACTG    | Bokor <i>et al</i> . <sup>3</sup>   |
| ZmLsil   | Reverse | GACGAGCGAGTGCCAGTG       | Bokor <i>et al</i> . <sup>3</sup>   |
| ZmLsi2   | Forward | ACGTGCCAACAGGTGCTTCTTATG | Bokor <i>et al</i> . <sup>3</sup>   |
| ZmLsi2   | Reverse | TACGATCGAGGCATACAATTATG  | Bokor <i>et al</i> . <sup>3</sup>   |
| ZmLsi6   | Forward | TTCAGGTGCCCTTCTACTGG     | Bokor <i>et al</i> . <sup>3</sup>   |
| ZmLsi6   | Reverse | ACGACGATCTCGATGAGGAG     | Bokor <i>et al</i> . <sup>3</sup>   |
| 18S rRNA | Forward | ACCTTACCAGCCCTTGACATATG  | Nelissen <i>et al.</i> <sup>4</sup> |
| 18S rRNA | Reverse | GACTTGACCAAACATCTCACGAC  | Nelissen <i>et al.</i> <sup>4</sup> |

**Table S2.** The sequences of specific primers used for the qRT-PCR analysis.

**Table S3.** Two-way ANOVA conducted to determine the interactive effects of Si treatments and earthworm on maize plant growth performance and soil Si bioavailability. The test results are shown with the test statistic F-value and significance levels as follows: \*\*\*p < 0.001, \*\*p < 0.01, \*p < 0.05 and NS p > 0.05.

| Mazie and soil traits    | Si treatments        | Earthworm           | Si treatments ×    |
|--------------------------|----------------------|---------------------|--------------------|
|                          |                      |                     | Earthworm          |
| Leaf dry weight          | 6.16 **              | 14.57 ***           | 1.26 <sup>NS</sup> |
| Stem dry weight          | 1.23 <sup>NS</sup>   | 1.97 <sup>NS</sup>  | 2.65 <sup>NS</sup> |
| Root dry weight          | 20.74 ***            | 4.89 *              | 4.10 *             |
| Pn                       | 0.63 <sup>NS</sup>   | 3.61 *              | 1.83 <sup>NS</sup> |
| Rubisco activity         | 54.06 ***            | 57.21 ***           | 51.99 ***          |
| Leaf Si                  | 20.43 ***            | 7.27 *              | 15.90 ***          |
| Stem Si                  | 1.50 <sup>NS</sup>   | $0.07 \ ^{ m NS}$   | 0.19 <sup>NS</sup> |
| Root Si                  | 51.92 ***            | 9.15 **             | 8.67 **            |
| ZmLsil                   | 190.63 ***           | 5.98 *              | 2.93 <sup>NS</sup> |
| ZmLsi2                   | 262.15 ***           | 0.25 <sup>NS</sup>  | 0.57 <sup>NS</sup> |
| ZmLsi6                   | 663.91 ***           | 5.24 *              | 1.55 <sup>NS</sup> |
| Bulk soil silicic acid   | 1.32 <sup>NS</sup>   | 0.02 <sup>NS</sup>  | 0.15 <sup>NS</sup> |
| Bulk soil SSB            | 0.0001 <sup>NS</sup> | 0.61 <sup>NS</sup>  | 1.09 <sup>NS</sup> |
| Bulk soil DOC            | 0.08 <sup>NS</sup>   | 0.03 <sup>NS</sup>  | 0.10 <sup>NS</sup> |
| Rhizosphere silicic acid | 34.11 ***            | 0.03 <sup>NS</sup>  | 0.42 <sup>NS</sup> |
| Rhizosphere SSB          | 0.35 ***             | 81.98 <sup>NS</sup> | 1.50 <sup>NS</sup> |
| Rhizosphere DOC          | 28.89 ***            | 3.69 <sup>NS</sup>  | 3.28 <sup>NS</sup> |
| Phenylalanine            | 86.10 ***            | 15.33 **            | 3.35 <sup>NS</sup> |
| Histidine                | 80.96 ***            | 0.004  NS           | 3.04 <sup>NS</sup> |
| Glutamic acid            | 148.06 ***           | 43.83 ***           | 15.02 **           |
| Maltose                  | 95.33 ***            | 89.63 ***           | 49.02 ***          |
| Fructose                 | 46.29 ***            | 29.92 ***           | 16.75 **           |
| 4-Methoxycinnamic acid   | 76.43 ***            | 22.83 ***           | 8.35 *             |
| 2-Hydroxycinnamic acid   | 56.99 ***            | 13.49 **            | 5.39 *             |
| Malic acid               | 37.16 ***            | 0.22 <sup>NS</sup>  | 2.72 <sup>NS</sup> |
| Caffeic acid             | 53.27 ***            | 43.31 ***           | 25.72 ***          |
| Citric acid              | 58.80 ***            | 9.09 **             | 16.91 **           |
| Chlorogenic acid         | 64.81 ***            | 0.43 <sup>NS</sup>  | 3.68 <sup>NS</sup> |
| Fumaric acid             | 15.84 **             | 9.98 **             | 6.91 *             |

**Table S4.** Permutational multivariate analysis of variance (PERMANOVA) was conducted to determine the interactive effects of  $SiO_2$  NMs treatment and earthworm on maize root metabolite profiles.

| Treatment               | F value | p value   |
|-------------------------|---------|-----------|
| SiO <sub>2</sub> NMs    | 35.89   | p < 0.001 |
| Earthworm               | 17.38   | p < 0.001 |
| $SiO_2$ NMs × Earthworm | 9.03    | p = 0.006 |





Fig. S1. TEM image (a) and size distribution (b) of  $SiO_2 NMs$ .



Fig. S2. Experimental culture pot design: the top (a) and bottom (b) of pot were covered with transparent plastic cylinders (height 20 cm) and nylon mesh (30  $\mu$ m pore diameter) for keeping from earthworm escaping.



Fig. S3. The dissolution of  $SiO_2$  NMs in the absence and presence of silicate solubilizing bacteria for seven days (n = 5).  $SiO_2$  NMs: 10 mg L<sup>-1</sup> SiO<sub>2</sub> NMs. SSB: silicate solubilizing bacteria.



**Fig. S4.** Spearman correlations of the CFU abundance of silicate solubilizing bacteria (SSB) between earthworm cast and drilosphere soil.



**Fig. S5.** (a) Dissolved organic carbon content in the bulk soil and rhizosphere soil upon exposure to sodium silicate and SiO<sub>2</sub> NMs in the absence of earthworms for 20 days (n = 5). (b) Dissolved organic carbon content in the bulk soil, drilosphere soil, and rhizosphere soil upon exposure to sodium silicate and SiO<sub>2</sub> NMs in the presence of earthworms for 20 days (n = 5). Different letters represent significant difference of each part of soils among treatments, respectively (p < 0.05).

### References

- L. Hu, M. Xia, X. Lin, C. Xu, W. Li, J. Wang, R. Zeng and Y. Song, Earthworm gut bacteria increase silicon bioavailability and acquisition by maize, *Soil Biol. Biochem.*, 2018, 125, 215-221.
- 2. N. Bityutskii, P. Kaidun and K. Yakkonen, Earthworms can increase mobility and bioavailability of silicon in soil, *Soil Biol. Biochem.*, 2016, **99**, 47-53.
- B. Bokor, S. Bokorova, S. Ondos, R. Svubova, Z. Lukacova, M. Hyblova, T. Szemes and A. Lux, Ionome and expression level of Si transporter genes (Lsi1, Lsi2, and Lsi6) affected by Zn and Si interaction in maize, *Environ. Sci. Pollut. Res. Int.*, 2015, 22, 6800-6811.
- H. Nelissen, B. Rymen, Y. Jikumaru, K. Demuynck, M. Van Lijsebettens, Y. Kamiya, D. Inzé and G. T. Beemster, A local maximum in gibberellin levels regulates maize leaf growth by spatial control of cell division, *Curr. Biol.*, 2012, 22, 1183-1187.