Supporting Information

Constructing Cu₂O/Bi₂MoO₆ p-n heterojunction towards boosted photo-assisted-electro-Fenton-like synergy degradation of ciprofloxacin

Jiaojiao Wang^{a,1}, Xiaoqing Jia^{a,1}, Denghui Shang^a, Liangbo Xie^a, Yi Li^{a,b*}, He Zhang^c, Sihui Zhan^{c*}, Wenping Hu^{a,b}

^a Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, School of Science, Tianjin University & Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300072, China.

^b Joint School of National University of Singapore and Tianjin University, Fuzhou International Campus, Tianjin University, Binhai New City, Fuzhou,350207, China.

^c Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education), College of Environmental Science and Engineering, Nankai University, Tianjin 300071, China.

Fig. S1 EDS elemental mapping of CBM-25%.

Fig. S2 FT-IR spectrum of Cu₂O, Bi₂MoO₆ and CBM-w% (15%, 25% and 35%).

Fig. S3 XPS survey scan spectrum of CBM-25%.

Fig. S4 The fine spectrum of Cu 2p with CBM-25% after the PAEF-like process.

Fig. S5 CIP (a) degradation curves and (b) kinetic curves for CBM-w% (15%, 25% and 35%) in the PAEF-like system.

Fig. S6 The concentration of H_2O_2 for CBM-25% catalyst in the PAEF-like system.

Fig. S7 Degradation curves of CIP in the PAEF-like system (with CBM-25%), in photo-electro-adsorption process (without CBM-25%) and in physical adsorption process (with CBM-25% and CF).

Fig. S8 Tauc plots of Cu₂O and Bi₂MoO₆.

Fig. S9 Energy band structures of Cu₂O and Bi₂MoO₆.

Fig. S10 EIS of Bi₂MoO₆, Cu₂O and CBM-25%.

Fig. S11 Cyclic tests of CBM-25% (a) and XRD patterns of fresh and used CBM-25%(b) in the PAEF-like system.

Fig. S12 The leaching concentration of Cu ions in the PAEF-like system.

Materials	Specific surface area	Pore volume	Average pore size
	$(m^2 \cdot g^{-1})$	(cm ³ ·g ⁻¹)	(nm)
Bi ₂ MoO ₆	54.36	0.245	17.95
Cu ₂ O	13.46	0.068	22.59
CBM-25%	85.35	0.411	22.85

Table S1 BET results of Bi2MoO6, Cu2O and CBM-25%.

	Cu^+	Cu ²⁺
Before reaction	71.47%	28.53%
After reaction	51.15%	48.85%

Table S2 The relative percentages of Cu^+ and Cu^{2+} calculated by the peak area of Cu 2p fine spectra before and after reaction.

Compounds	Molecular formula	Structural formula	m/z
CIP	$C_{17}H_{18}O_3N_3F$		332
А	$C_{17}H_{16}O_5N_3F$		362
В	$C_{14}H_{11}O_4N_2F$		291
С	$C_{13}H_{11}O_{3}N_{2}F$		263
D	$C_{17}H_{19}O_4N_3$		330
Е	$C_{17}H_{19}O_5N_3$	но б он	346
F	$C_{17}H_{18}O_4N_3F$		348
G	$C_{16}H_{17}O_3N_2F$	HO NH ₂ NH ₂ HO HO HO HO HO HO HO HO HO HO HO HO HO	304
Н	$C_{13}H_{12}O_3N_2$		245

 Table S3 The intermediates of CIP degradation process.