Supplementary Information

Plasmonic Bi NPs-accelerated interfacial charge transfer for enhanced solar-driven ciprofloxacin mineralization

Cailiang Yue ^a; Changqing Zhu ^a; Wenting Zheng ^a; Jinli Qiu ^a; Zhiling Du ^a; Chen Ling^b; Fu-Qiang Liu ^a, *;

^a State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, Jiangsu, P.R. China

^b College of Biology and the Environment, Nanjing Forestry University, Nanjing 210037, Jiangsu, P.R. China

* Corresponding Author

*Phone: +86 139 1387 1032; E-mail: lfq@nju.edu.cn (Fu-Qiang Liu)

Txt S1. Preparation of photocatalysts

Preparation of Bi NPs. Bi NPs was synthesized via simple solvothermal method. Generally, 4 mmol Bi(NO₃)₃·5H₂O was dissolved in 40 mL ethylene glycol with slowly stirring for 1 h. Afterwards, the solution was transferred into a 100 mL Teflon-lined stainless-steel autoclave and solvothermally treated at 200 °C for 12 h prior to natural cooling to room temperature. The obtained powder was centrifuged, washed thrice with ultrapure water and dried at 200 °C for 12 h.

Preparation of Bi₂MoO₆ and BiOBr. Bi₂MoO₆ and BiOBr were synthesized by solvothermal method. Firstly, 4 mmol Bi(NO₃)₃·5H₂O was dissolved in 40 mL ethylene glycol to obtain solution A. 4 mmol NaBr and 2 mmol Na₂MoO₄ were dissolved in 10 mL ethylene glycol to obtain solution B. Subsequently, solution B was dropped into solution A with slowly stirring for 1 h. Then, the mixed solution was transferred into a 100 mL Teflon-lined stainless-steel autoclave and solvothermally treated at 140 °C for 12 h prior to natural cooling to room temperature. The obtained powder was centrifuged, washed three times with ultrapure water and dried at 60 °C for 12 h. The obtained Bi₂MoO₆ and BiOBr were named as BMO and BOB, respectively.

Preparation of Bi/Bi₂MoO₆ and Bi/BiOBr. The synthesis of Bi/Bi₂MoO₆ and Bi/BiOBr were similar to that of BMO and BOB, except that the solvothermal temperature was adjusted to 200 °C.

Preparation of Bi₂**MoO**₆/**BiOBr.** For comparison, binary heterojunction $Bi_2MoO_6/BiOBr$ with optimized molar ratio (NaBr:Na₂MoO₆=2:1) was also prepared. Generally, 4 mmol Bi(NO₃)₃·5H₂O, 2 mmol NaBr and 1 mmol Na₂MoO₄ was dissolved in 40 mL ethylene glycol with slowly stirring for 1 h. Then, the solution was transferred into a 100 mL Teflon-lined stainless-steel autoclave and was solvothermally treated at 140 °C for 12 h and followed by natural cooling to room temperature. The obtained powder was centrifuged, washed three times with ultrapure water and dried at 60 °C for 12h. The obtained Bi₂MoO₆/BiOBr was named as BMO/BOB.

	Temperature	D'ALO	ND	NNO
Photocatalysts	& Time	B1(NO ₃) ₃	NaBr	Na ₂ MoU ₆
Bi	200 °C/24 h	4 mmol	0	0
BMO	140 °C/24 h	4 mmol	0	2.0 mmol
BOB	140 °C/24 h	4 mmol	4 mmol	0
Bi/BMO	200 °C/24 h	4 mmol	0	2.0 mmol
Bi/BOB	200 °C/24 h	4 mmol	4 mmol	0
BMO/BOB	140 °C/24 h	4 mmol	2 mmol	1.0 mmol
BMO/Bi/BOB-1	200 °C/24 h	4 mmol	3 mmol	0.5 mmol
BMO/Bi/BOB-2	200 °C/24 h	4 mmol	2 mmol	1.0 mmol
BMO/Bi/BOB-3	200 °C/24 h	4 mmol	1 mmol	1.5 mmol

 Table S1. The synthesis conditions of different photocatalysts.

	SMZ		Т	С	BI	PA	Phe	nol
Instrument		HPLC, LC-2030C, Shimadzu						
Column		С	C18 colum	ın (4.6µm	, 2.1 mm >	< 250 mm)	
Injection		10						
volume (µL)				1	0			
Flow rate					1			
(mL/min)					L			
	Mobile phase	A:	Mobile p	hase A:				
Mobile phase	H ₂ O (0.5v	vt%	$\mathrm{H}_{2}\mathrm{O}$	(0.5wt%	Mobile p	ohase A:	Mobile p	hase A:
	KH ₂ PO ₄)		NaH ₂ PO ₄)		100% Methanol		100% Methanol	
	Mobile phase B:		Mobile phase B:		Mobile phase B:		Mobile phase B:	
	100%		100%		100% H ₂ O		100% H ₂	0
	Acetonitrile		Acetonitrile					
	Gradient:		Gradient	:	Gradient:		Gradient	:
El. 4	60% Mo	bile	75%	Mobile	70%	Mobile	80%	Mobile
Elution	phase A		phase A		phase A		phase A	
program	40% Mo	bile	25%	Mobile	30%	Mobile	20%	Mobile
	phase B phase B			phase B phase B				
Detector	UV detector							
Wavelength	270 nm 358 nm			275 nm		224	nm	

 Table S2. Analysis parameters for representative organic pollutants.

S	S _{BET}	Micropore volume	Average pore	
Sample	$(m^2 \cdot g^{-1})$	(cm ³ ·g ⁻¹)	diameter (nm)	
BOB	7.91	0.09	30.21	
ВМО	8.32	0.08	24.49	
BMO/BOB	20.03	0.07	8.33	
BMO/Bi/BOB-2	28.84	0.06	7.02	

Table S3. BET surface and porosity parameters of BOB, BMO, BMO/BOB and BMO/Bi/BOB-2.

Table S4. Bi specie content (Atom ratio%) of BMO/Bi/BOB-2.

Bi 4f	Area ratio (%)
Bi ³⁺	89.25
Bi ⁰	10.75

Dhadaaadahaada	Dosage Concentration		1:-14	k value		D-6
r notocatarysis	(g/L)	(mg/L)	Light source	(min ⁻¹)	TOC removar (76)	Keis.
Zn doped Cu ₂ O	0.6	20	500 W metal halide lamp	0.0038	-	1
TiO ₂ /γ-Fe ₂ O ₃ /GO	0.4	10	300W Xe light	0.0048	49.0% in 160 min	2
γ-Fe ₂ O ₃ @ZnO	0.5	10	300W Xe light	0.0843	-	3
N-doped TiO ₂	0.5	10	Blue LED light	0.0093	-	4
BiOCl/diatomite	0.5	10	300W Xe light	-	42.9% in 240 min	5
Bi ₂ O ₃ /(BiO) ₂ CO ₃	0.5	10	300W Xe light	0.1170	21% in 240 min	6
Br doped Bi ₂ O ₂ CO ₃	0.5	10	240W Xe light	0.0860	43% in 30 min	7
Bi/Bi ₃ NbO ₇	0.5	10	300W Xe light	0.0143	53% in 180 min	8
rGO/Fe ₂ O ₃ /g-C ₃ N ₄	1	50	500W halogen lamp	0.0836	-	9
TP-TiO ₂	0.1	10	UV-vis light	0.0403	-	10
P25	0.1	20	LED	0.2217	62.7% in 40 min	11
Mn ₂ O ₃ /Mn ₃ O ₄ /MnO ₂	0.2	10	300W Xe lamp	-	78.3% in 40 min	12
Ag ₂ CrO ₄ /Ag/BiFeO ₃	0.2	10	250W Volight	0.0628	78.20% in 120 mir	13
@RGO	0.2	10	350W Ae light	0.0638	78.3% in 120 min	15
This work	0.4	20	350W Xe light	0.1389	79.9% in 120 min	-

 Table S5. Comparison of photocatalytic CIP degradation over recently reported photocatalysts.

	1st	2nd	3rd	4th	5th
Recovery rate (%)	100	97.61	96.17	94.62	93.07
Bi leaching (mg/L)	0.093	0.089	0.076	0.070	0.072

Table S6. The recovery rates and Bi leaching on each cycle.

Table S7. Fitting parameters for TRPL of prepared photocatalysts.

Fitting parameters	$\tau_1(ns)$	$\tau_2(ns)$	B ₁	B ₂	τ _{average} (ns)
BOB	2.58	65.52	2045.73	348.17	53.69
ВМО	2.42	55.12	2194.34	328.64	43.61
BMO/BOB	2.41	115.09	2664.32	90.73	72.18
BMO/Bi/BOB-2	2.29	135.12	2754.34	78.64	85.51

Time-resolved fluorescence decay spectra of BMO, BOB, BMO/BOB and BMO/Bi/BOB-2 were determined at 475, 441, 465 and 455 nm respectively under the incident light of 325 nm. The decay curves could be fitted based on the following equation.

$$I = B_1 exp(-t/\tau_1) + B_2 exp(-t/\tau_2)$$
 Eq. S1

The average lifetime was calculated by using the following equation.

$$\tau_{\text{average}} = (B_1 \tau_1^2 + B_2 \tau_2^2) / (B_1 \tau_1 + B_2 \tau_2)$$
 Eq. S2

Compounds	Formula	m/z	Proposed structure
CIP	C ₁₇ H ₁₈ FN ₃ O ₃	332	
I 1	C ₁₇ H ₁₆ FN ₃ O ₅	362	
I 2	C ₁₆ H ₁₆ FN ₃ O ₄	334	F NH ₂ COOH
Ι2'	C ₁₆ H ₁₆ FN ₃ O ₄	334	
Ι3	C ₁₅ H ₁₆ FN ₃ O ₃	306	F H NH ₂ COOH
I 4	C ₁₅ H ₁₅ FN ₂ O ₃	291	

Table S8. The structural information of CIP and the possible intermediates.

Figure S1. N₂ adsorption-desorption isotherms of BMO, BOB, BMO/BOB and BMO/Bi/BOB-2.

Figure S2. Survey XPS spectrum of BMO/Bi/BOB-2.

Figure S3. Mott-Schottky plots of BMO and BOB.

Figure S4. (a) Effects of BMO/Bi/BOB-2 dosage on photocatalytic CIP degradation process ([CIP]
= 20 mg/L); (b) Effects of CIP concentration on photocatalytic degradation process
([BMO/Bi/BOB-2 dosage] = 0.4 g/L).

Figure S5. k values of as-prepared photocatalysts for CIP degradation.

Figure S6. XRD patterns of fresh and used BMO/Bi/BOB-2.

Figure S7. (a) The photocatalytic degradation curves and (b) TOC removal ratios of different organic pollutants by BMO/Bi/BOB-2.

Figure S8. The effects of pH values (a), anions (b), organic matters (c), cations (d), on the degradation of CIP over BMO/Bi/BOB-2.

As shown in Fig. S8a, the photocatalytic CIP degradation process was gradually inhibited with the increase of pH value. At the high pH values, both of the CIP and photocatalyst were both negatively charged, leading to electrostatic repulsion between them and the low photocatalytic degradation efficiency of CIP. As shown in Fig. S8bd, we investigated the effect on photocatalytic CIP degradation of 5 common environmental coexist anions (SO₄²⁻, Cl⁻, NO₃⁻, HCO₃⁻ and CO₃²⁻), 4 common environmental coexist organic acids (OA, HA, EDTA and CA) and 4 common environmental coexist heavy metals (Mn2+, CrO_4^{2-} , Fe^{3+} and Cu^{2+}). Among these environmental factors, 4 (Cl⁻, NO₃⁻, HCO₃⁻ and CO₃²⁻) and 4 organic acids (OA, HA, EDTA and CA) exhibited a little negative effect on photocatalytic CIP degradation process, as they could act as trapping agents of •OH. It's worth noting that Fe(III) could enhance photocatalytic CIP degradation process as Fe(III) could complex with CIP to form reddish brown photosensitive Fe(III)-CIP complexes.

Figure S9. Photocatalytic •OH production curves (a) and H₂O₂ production curves (b) of BMO, BOB, BMO/BOB and BMO/Bi/BOB-2.

Figure S10. The analog equivalent circuit diagram of electrochemical impedance test

Figure S11. Schematic diagrams for type-II and Z-scheme heterojunction.

Figure S12. LC-MS chromatogram in ES⁺ mode for samples withdrawn at (a) 15 min and (b) 30 min irradiation.

References

- X. Yu, J. Zhang, J. Zhang, J. Niu, J. Zhao, Y. Wei and B. Yao, Photocatalytic degradation of ciprofloxacin using Zn-doped Cu₂O particles: Analysis of degradation pathways and intermediates, *Chem. Eng. J.*, 2019, 374, 316-327.
- F. Wang, X. Yu, M. Ge and S. Wu, One-step synthesis of TiO₂/γ-Fe₂O₃/GO nanocomposites for visible light-driven degradation of ciprofloxacin, *Chem. Eng. J.*, 2020, 384, 123381.
- N. Li, J. Zhang, Y. Tian, J. Zhao, J. Zhang and W. Zuo, Precisely controlled fabrication of magnetic 3D γ-Fe₂O₃@ZnO core-shell photocatalyst with enhanced activity: Ciprofloxacin degradation and mechanism insight, *Chem. Eng. J.*, 2017, 308, 377-385.
- Q. Wang, Y. Cui, R. Huang, L. Zhong, P. Yan, S. Zhang, Q. Zhao, D. Jiang, A. Tang and H. Yang, A heterogeneous Fenton reaction system of N-doped TiO2 anchored on sepiolite activates peroxymonosulfate under visible light irradiation, *Chem. Eng. J.*, 2020, 383, 123142.
- Z. Jia, T. Li, Z. Zheng, J. Zhang, J. Liu, R. Li, Y. Wang, X. Zhang, Y. Wang and C. Fan, The BiOCl/diatomite composites for rapid photocatalytic degradation of ciprofloxacin: Efficiency, toxicity evaluation, mechanisms and pathways, *Chem. Eng. J.*, 2020, 380, 122422.
- M. Chen, J. Yao, Y. Huang, H. Gong and W. Chu, Enhanced photocatalytic degradation of ciprofloxacin over Bi2O₃/(BiO)₂CO₃ heterojunctions: Efficiency, kinetics, pathways, mechanisms and toxicity evaluation, *Chem. Eng. J.*, 2018, 334, 453-461.
- X. Hu, H. Zhao, Y. Liang and R. Chen, Energy level mediation of (BiO)2CO3 via Br doping for efficient molecular oxygen activation and ciprofloxacin photodegradation, *Appl. Catal. B: Environ.*, 2019, 258, 117966.
- K. Wang, Y. Li, G. Zhang, J. Li and X. Wu, 0D Bi nanodots/2D Bi₃NbO₇ nanosheets heterojunctions for efficient visible light photocatalytic degradation of antibiotics: Enhanced molecular oxygen activation and mechanism insight, *Appl. Catal. B: Environ.*, 2019, 240, 39-49.
- S. Shanavas, S. Mohana Roopan, A. Priyadharsan, D. Devipriya, S. Jayapandi, R. Acevedo and P. M. Anbarasan, Computationally guided synthesis of (2D/3D/2D) rGO/Fe₂O₃/g-C₃N₄ nanostructure with improved charge separation and transportation efficiency for degradation of pharmaceutical molecules, *Appl. Catal. B: Environ.*, 2019, 255, 117758.
- Y. Li, Y. Fu and M. Zhu, Green synthesis of 3D tripyramid TiO₂ architectures with assistance of aloe extracts for highly efficient photocatalytic degradation of antibiotic ciprofloxacin, *Appl. Catal. B: Environ.*, 2020, 260, 118149.
- S. Li, T. Huang, P. Du, W. Liu and J. Hu, Photocatalytic transformation fate and toxicity of ciprofloxacin related to dissociation species: Experimental and theoretical evidences, *Water Res*, 2020, 185, 116286.
- J. Zhao, Z. Zhao, N. Li, J. Nan, R. Yu and J. Du, Visible-light-driven photocatalytic degradation of ciprofloxacin by a ternary Mn₂O₃/Mn₃O₄/MnO₂ valence state heterojunction, *Chem. Eng. J.*, 2018, 353, 805-813.
- A. Kumar, G. Sharma, M. Naushad, T. Ahamad, R. C. Veses and F. J. Stadler, Highly visible active Ag₂CrO₄/Ag/BiFeO₃@RGO nano-junction for photoreduction of CO₂ and photocatalytic removal of ciprofloxacin and bromate ions: The triggering effect of Ag and RGO, *Chem. Eng. J.*, 2019, 370, 148-165.