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Figure S1. Schematic illustrating the molybdenum disulfide-enabled activated carbon

(MoS,@AC) synthesis procedure.
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Figure S2. Molybdenum leaching following pre-soaking of the molybdenum disulfide-enabled

activated carbon (MoS,@AC) in 25 mM acetate buffer at different times. The chosen pre-

soaking time was 24 hours.
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Figure S3. Investigation of the leached Molybdenum species following pre-soaking of the
molybdenum disulfide-enabled activated carbon (MoS,@AC) in 25 mM acetate buffer for 24
hours. Mo concentration in the pre-soaking solution was quantified prior to and following
filtration through a 0.22 um PVDF filter (results are shown as concentration ratio). Control
experiment suggest that the filter had minor effect on the Mo concentration (left bar). As
filtration did not affect the Mo concentration in the pre-soaking solution, we suggest that the
pre-soaking stage mostly result in leaching of loosely-bound dissolved Mo compounds from
the synthesized MoS,@AC. The dissolved Mo species are probably composed of adsorbed
precursors from the hydrothermal synthesis stage rather than the leaching of the reactive

material itself.
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(A-E) SEM images of molybdenum disulfide-enabled activated carbon (MoS,@AC). (F) A

representative analysis by Imagel for image (E), showing the MoS, coverage (in red) on the

AC particles.
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Figure SS. X-ray photoelectron spectroscopy (XPS) surveys of molybdenum disulfide-enabled
activated carbon (MoS,@AC) before (A) and after (B) mercury adsorption.
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Figure S6. Streaming potential analysis of commercial activated carbon -Norit® 12-40 (AC),
and molybdenum disulfide-enabled activated carbon (MoS,@AC) as a function of solution pH.

Fitting equations are presented as well.
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Figure S7. Kinetics and isotherm models for mercury adsorption by molybdenum disulfide-

enabled activated carbon (MoS,@AC). (A) Linear pseudo second order kinetic model fitting

and (B) linear curve of Langmuir isotherm fitting.
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Figure S8. MoS,@AC adsorption potential towards methylene blue and mercury as model
compounds for heavy metals and organic contaminants, respectively. (A) Kinetics of removal
of 10 mg L' of MB by pristine AC and MoS,@AC in absence and presence of mercury. (B)
Adsorption isotherm of MB and Langmuir fit. (C) Kinetics of removal of 10 mg L-! of mercury
by pristine AC and MoS,@AC in absence and presence of MB. The removal rate in all figures

is presented as a mass ratio of adsorbed pollutant to adsorbing material (i.e., MoS, for mercury,

AC for MB).
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Figure S9. Methylene blue isotherm and kinetic model fitting. (A) Linear pseudo second order

kinetic model fitting and (B) linear curve of Freundlich isotherm fitting.
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Table S1. Groundwater characteristics used in this study, including their limit of detection

(LOD).

Test Well Depth 16.7 m
Units LOD Measurement

pH 7.4
Dissolved Sodium mg/L 0.1 4,658.00
Dissolved Calcium mg/L 0.2 281.40
Dissolved Magnesium mg/L 0.1 183.60
Bromide mg/L 0.05 8.40
Fluoride mg/L 03 4.10
Sulphate as SO* mg/L 0.5 3,977.60
Chloride mg/L 03 6,244.70
Nitrate as NOy mg/L 0.2 15.00
Nitrite as NO,” mg/L 0.02 0.09
Total Organic Carbon mg/L 2 12.00
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Table S2. Kinetics and isotherm models values for mercury and methylene blue (MB). Selected

models are marked in orange.

Hg** MB

a. First order model
k; [L/day] 1.112 0.4656
Je [mg/g] 0.385 0.2887
R2 - 0.856 0.8742
b. Second order model
k, [g/mg/day] 0.021 0.00108
Je [mg/g] 2174 125
R? - 0.9833 0.8871
¢. Langmuir isotherm

| Qmax [mg/g] 1538 555.5
k. [L/mg] 0.025 0.0152
R? - 0.9958 0.9728
d. Freundlich isotherm
k¢ [(mg/g)*(L/mg)'"] 39.90 42.7562
n - 0.7165 0.415
R? - 0.9798 0.9934
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Table S3. Simultaneous organic-inorganic removal potential by materials previously suggested

in literature.

MoS,@AC Mercury Methylene blue (this paper)
1,280 mg/g MoS, 555 mg/g AC

Porous organic polymer | Mercury Toluene and m-xylene | (1)

with thiol or thioether | 180 mg/g 350-450 mg/g

groups (POP-Sh/ POP-

SMe)

TiO,@AC/ Lead Methylene blue (2)

TiO,@CE (carbonized | 97% ~90%

€poxy)

Betaine modified | Cadmium Bisphenol A 3)

montmorillonite ~40 mg/g 80 mg/g

Block-co-polymer Lead Phenol 18.18 mg/g 4)

inorganic—organic  hybrid | 131.6 mg/g

material
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Equations used in the study. Kinetic equations were used as pseudo-first and -second order

models (S1 and S2, respectively). The isotherm models used are Langmuir and Freundlich, as

described in equations S3 and S4 (respectively). Adsorption capacities are q and q. (mg g'!)

at particular time points and at equilibrium, respectively. Pseudo first- and second-order rate

constant are k; (day!) and k, (g mg!' day') and t represents single time point (day). The

maximum adsorption capacity is qma.x (mg g') assessed through isotherm fit. The Langmuir

and Freundlich constants are ki (L mg™!) and k¢ ((mg/g)*(L/mg)'"), respectively. C, is the

pollution concentration (mg L-!). Equation S5 is Bragg's law, where d (nm) is the interplanar

spacing, 0 (°) is the incidence angle, n is the diffraction order, and A (nm) is the radiation

wavelength.
Equation
Equation Model name Reference
number
Nonli Sy = e * (1 - expiei( =k, * ) 5
ontnear Pseudo first order )
(Sl) ke xt
! —q) =1 - ineti
Linear: = (9= 4c0) = log (4.) 2.303 Kinetics
qo*ky*t Q)
q e —
Nonlinear: O 14q, ket Pseudo second order
(82)
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2
Linear: 10 kpxq. e
q.= Qmax * kL * [Ce] (6)
Nonlinear: 14k, +[C,]
(S3) Langmuir isotherm
[C.] 1 [C.]
= +
Linear: 9e  *1*%maxr  Gmax
I ©)
Nonlinear; 9e =k * Ce
(S4) Freundlich isotherm
log (4,) = log (ky) + - » logii(C,)
. Og qe = Og — % O‘gif,‘fi e
Linear: 7 "n
(S35) 2xd*sinf=nx2 Bragg's equation (7)
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Text S1. Calculation of effectiveness criterion. To determine the effectiveness criterion, parallel
batch experiments were conducted with 46 mL solution of 10 mg L' of Hg?*: (i) with 5.3 mg
MoS,@AC (as in typical adsorption experiment in this study) and (ii) with 1.7 mg MoS,
nanosheets. The MoS, weight in both experiments was similar, as in supported form TGA
suggested 30% MoS, coverage. The MoS, nanosheets were synthesized in the same method as

described in the Methodology section for supported MoS,.
The remaining mercuric concentration at equilibrium was found to be:

mg
g MosS,

MoS, : Ayg = 1269 +8.7

mg
g MoS,

MoS,@AC: gy, =200.2 + 4.5

Therefore, the effectiveness criterion was determined as:

NM@S 200.2
= =1.6

Effectiveness criterion:
126.9
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