Electronic Supplementary Material (ESI) for Environmental Science: Nano. This journal is © The Royal Society of Chemistry 2021

Supporting Information

For

In Situ Observations of the Occlusion of a Clay-Sugar Compound within Calcite

Jialin Chi,¹ Chonghao Jia,¹ Wenjun Zhang,¹ Christine V. Putnis,^{2,3} and Lijun Wang^{*,1}

¹College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China

²Institut für Mineralogie, University of Münster, 48149 Münster, Germany ³School of Molecular and Life Sciences, Curtin University, 6845 Perth, Australia

SI Tables (1-2)

SI Figures (1-14)

SI References

σ	Concentration (mM)			nH
	CaCl ₂	K2C2O4	NaCl	• P ¹¹
0.274	0.18	5.50	100	8.3
1.196	0.30	9.00	100	8.3

Table S1. Supersaturated solutions for calcite growth.

 Table S2. Raman shifts (cm⁻¹) of laponite, glucose, dextran, and calcite.

Composition	Wavenumber (cm ⁻¹)	Assignments
Laponite ¹	358, 683	[SiO ₄] lattice mode
	404	CC bending
Glucose ²	424	CCC bending
	521	CCO bending
	407	CC bending
Dextran ^{2,3}	441	CCO endocyclic bending
	540	CCO bending
Calaita ⁴	713	CO ₃ ²⁻ in-plane bending
Calche	1086	CO symmetric stretching

Figure S1. (A) AFM deflection images of the $(10\overline{1}4)$ cleavage surface of calcite, showing a rhombohedral growth spiral with (B) height of 3.1 Å along a white dashed line in (A) in a solution supersaturated with respect to calcite at $\sigma = 1.196$ (pH 8.3 and IS = 0.11 M).

Figure S2. Raman mapping of 5 mg/L laponite at 683 cm⁻¹ mixed with 2.5 mg/L sugars before elution at 521 or 540 cm⁻¹ including (A) Glu, (B) Dex-5 and (C) Dex-20 deposited on tinfoil.

Figure S3. (A-C) AFM deflection images of growing hillocks (spirals) in a solution supersaturated with respect to calcite at $\sigma = 1.196$ and pH 8.3 in the presence of (A1-A4) Glu, (B1-B4) Glu + Lap complexes before elution, and (C1-C4) Glu + Lap complexes eluted for 2 d. (D-F) Relative step movement velocities of the (D) v_+ , (E) $v_$ and (F) sum of v_+ and v_- ($v_m = v_+ + v_-$) as a function of Glu concentrations in the presence of 5 mg/L laponite + Glu complexes before and after elution at $\sigma = 1.196$ (pH = 8.3).

Figure S4. (A-C) AFM deflection images of growing hillocks (spirals) in a solution supersaturated with respect to calcite at $\sigma = 1.196$ and pH 8.3 in the presence of (A1-A4) Dex-5, (B1-B4) Dex-5 + Lap complexes before elution, and (C1-C4) Dex-5 + Lap complexes eluted for 2 d. (D-F) Relative step movement velocities of the (D) v_+ , (E) $v_$ and (F) sum of v_+ and v_- ($v_m = v_+ + v_-$) as a function of Dex-5 concentrations in the presence of 5 mg/L laponite + Dex-5 complexes before and after elution at $\sigma = 1.196$ (pH = 8.3).

Figure S5. (A-C) AFM deflection images of growing hillocks (spirals) in a solution supersaturated with respect to calcite at $\sigma = 1.196$ and pH 8.3 in the presence of (A1-A4) Dex-20, (B1-B4) Dex-20 + Lap complexes before elution, and (C1-C4) Dex-20 + Lap complexes eluted for 2 d. (D-F) Relative step movement velocities of the (D) v_{+} , (E) v_{-} and (F) sum of v_{+} and v_{-} ($v_{m} = v_{+} + v_{-}$) as a function of Dex-20 concentrations in the presence of 5 mg/L laponite + Dex-20 complexes before and after elution at $\sigma =$ 1.196 (pH = 8.3).

Figure S6. AFM height images of the adsorption of 5 mg/L laponite + Glu complexes (A1, A2) before and (B1, B2) after elution on calcite for 30 min with varied concentrations of Glu ($\sigma = 0.274$, pH = 8.3).

Figure S7. AFM height images of the adsorption of 5 mg/L laponite + Dex-5 complexes (A1, A2) before and (B1, B2) after elution on calcite for 30 min with varied concentrations of Dex-5 ($\sigma = 0.274$, pH = 8.3).

Figure S8. AFM height images of the adsorption of 5 mg/L laponite + Dex-20 complexes (A1, A2) before and (B1, B2) after elution on calcite for 30 min with varied concentrations of Dex-20 ($\sigma = 0.274$, pH = 8.3).

Figure S9. Time sequence of AFM height images of the adsorption and subsequent occlusion of laponite and sugar complexes before elution with concentrations of (A1-A4) 5 mg/L laponite + 2.5 mg/L Glu, (B1-B4) 5 mg/L laponite + 2.5 mg/L Dex-5, and (C1-C4) 5 mg/L laponite + 2.5 mg/L Dex-20 on a growing calcite surface.

Figure S10. Raman spectra of adsorption and occlusion of sugar/laponite complexes (before elution) within calcite. The signals of calcite, laponite, and sugar are marked by arrows.

Figure S11. Particle number of 5 mg/L laponite + sugar complexes (A) before and (B) after elution with different concentrations of sugars adsorbed on a calcite surface prior to the occlusion process in an area of 1 μ m². Different uppercase letters in (A, B) indicate significant differences at *P* < 0.01.

Figure S12. Representative force-distance curves of the interactions between (A) bare Au-coated tips, (B) Au-coated tips modified with LC-SPDP, (C) Au-coated tips

immersed in amide-modified Dex-20 for 12 h, and (D) Au-coated tips modified with LC-SPDP immersed in Dex-20 for 12 h, and calcite surfaces.

Figure S13. (A) A representative force-time curve of the interactions between amidemodified Dex-20 and a calcite surface. (B-D) The fitted contour length for different amide-modified sugars (including Glu, Dex-5, and Dex-20) with calcite surfaces.

Figure S14. (A) Representative force-distance curves of the interactions between amide-modified sugars and calcite surfaces. (B-D) The rupture forces between amidemodified sugars and calcite surfaces at a loading rate of 200 nm/s. (E) The fitted rupture force curves of various amide-modified sugars interacting with calcite surfaces.

Figure S15. The fitted total force during stretching force or interaction area curves of amide-modified sugars interacted with calcite surfaces.

SI References

(1) G. F. Perotti, J. Tronto, M. A. Bizeto, C. M. S. Izumi, M. L. A. Temperini, A. B.

Lugão, D. F. Parra and V. R. L. Constantino, Biopolymer-clay nanocomposites: Cassava starch and synthetic clay cast films, *Braz. Chem. Soc.*, 2014, **25**, 320-330.

(2) M. Mathlouthi, Laser-Raman spectra of d-glucose and sucrose in aqueous solution. *Carbohyd. Res.*, 1980, **81**, 203-212.

(3) M. Larsson, J. Lindgren, A. Ljunglöf, K. G. Knuuttila, Ligand distributions in agarose particles as determined by confocal Raman spectroscopy and confocal scanning laser microscopy, *Appl. Sprctrosc.*, 2003, **57**, 251-255.

(4) L. Borromeo, U. Zimmermann, S. Andò, G. Coletti, D. Bersani, D. Basso, P. Gentile,

B. Schulz, E. Garzanti, Raman spectroscopy as a tool for magnesium estimation in Mgcalcite, *J. Raman Spectrosc.* 2017, **48**, 983-992.