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Experimental section

1. Preparation of catalysts

In detail, for the Fe-Mn oxide catalyst, stoichiometric quantities of 3.58 g Mn(NO3)2 

and 8.08 g Fe(NO3)3•9H2O were dissolved in 20 ml distilled water under vigorous 

stirring at 30 °C to form a solution with the desired molar ratio of Fe/Mn (1:1). Then, 

an appropriate amount of citric acid was added to obtain a solution with a molar ratio 

of citric acid per metal ion of 1.2. After 15 min of constant stirring, the above solution 

was gradually heated to 80 °C and continuously stirred for 4 h at this temperature to 

form a gel. The resulting gel was dried at 100 °C for 12 h, and then calcined at 500 °C 

for 4 h. This preparation method is easy to be scaled up. Ca. 100 g catalyst could be 

prepared one time using a container with a volume of 2000 ml in the laboratory. 

Similarly, the samples with various M/Mn ratios were synthesized. In detail, for the 

Co-Mn oxide catalyst, stoichiometric quantities of 3.58 g Mn(NO3)2 and 5.82 g 

Co(NO3)3•6H2O were used with the desired molar ratio of Co/Mn (1:1). For the Ni-Mn 

oxide catalyst, stoichiometric quantities of 3.58 g Mn(NO3)2 and 5.82 g Ni(NO3)3•6H2O 

were used with the desired molar ratio of Ni/Mn (1:1). 

2. Characterization

H2-TPR was performed on an AutoChem II 2920 desorption apparatus. The catalyst 

(0.100 g) was pretreated in He (30 mL min -1) at 250 °C for 1 h and then cooled to 80 

°C in He. The sample was then exposed to 10 vol% H2/Ar (30 mL min-1), and the 

temperature was raised to 900 °C at a rate of 10 °C min-1. The oxygen storage 

capacities of the catalysts were evaluated by the O2 temperature-programmed 

desorption (O2-TPD) method on an AMI-300 desorption apparatus. In brief, 50 mg of 

catalyst was pretreated under an O2 atmosphere (30 cm3/min) at 120 °C for 60 min 

and cooled down to 30 °C at the same condition. Then, the pretreated catalyst was 

heated from 30 to 900 °C in a He flow (30 cm3/min) at a heating rate of 10 °C/min.28 

Electron paramagnetic resonance (EPR) analyses were performed on an EMXplus 

spectrometer (Bruker, Germany). Before the test, 3 mg of sample was dispersed in 6 
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ml of methanol, and the dispersion was added into methanol with 60 mM of DMPO. 

The sample was tested after shaking up. The operating parameters were as follows: 

modulation frequency: 100.00 KHz; modulation amplitude: 2.00 G; sweep width: 

100.00 G; conversion: 40.000 ms; time constant: 40.960 ms; microwave power: 20.00 

mW; microwave frequency: 9.84 GHz; and sweep time: 60.70 s.

Table S1 Comparison of specific activities over various binary systems (Fe-Mn, Ni-Mn, 
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Co-Mn) in catalytic oxidation of formaldehyde at 25 °C. (Conditions: Catalyst: 0.100 g, 

HCHO: 115 ppm, GHSV: 300 L g-1 h-1). 

Table S2. Comparison of HCHO catalytic oxidation performance of Fe-Mn(1:1) with 

other catalysts reported in literature.
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Fig. S1. Formaldehyde removal as a function of reaction time at different temperatures 
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over the Fe-Mn (1:1) mixed oxide catalyst at a GSHV of 300 L g-1 h-1, (a) 25 °C, (b) 35 

°C, (c) 45 °C, and (d) 55 °C.  

Fig. S2. Effect of GHSV on the catalytic performance of the Fe-Mn (1:1) oxide catalyst 

(catalyst: 25-100 mg, and HCHO concentration: 115 ppm, Temperature: 25 °C). 
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Fig. S3. (a) Effect of relative humidity (RH) on the activity of the Fe-Mn (1:1) oxide 

catalyst (catalyst: 50 mg, and HCHO concentration: 115 ppm, GHSV = 600 L g-1 h-1, 

Temperature: 25-100 °C). (b) Effect of relative humidity (RH) on the stability of the Fe-

Mn (1:1) oxide catalyst (catalyst: 100 mg, Temperature: 25 °C, GHSV = 300 L g-1 h-1, 

and HCHO concentration: 115 ppm).
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Fig. S4. The EDS-mapping of the Fe-Mn (1:1) oxide catalyst.
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Fig. S5. XRD patterns of the Fe-Mn (1:1) (Fe3Mn3O8) and the mechanically mixed Fe-

Mn (1:1) oxide catalysts.
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Fig. S6. Nitrogen adsorption-desorption isotherms of the Fe-Mn oxide catalysts with 

different Mn/Fe ratios.
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Fi
g. S7. O2-TPD profile of Fe2O3.
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Fig. S8. (a) XPS spectra of Mn 2p for the fresh, used the regenerated Fe-Mn(1:1)-

regenerated oxide catalysts. (b) Comparison of the surface molar ratios of Mn3+/Mn, 

(Mn3+ + Mn4+)/Mn on the surface of the respective catalysts. (c) XPS spectra of O 1s 

for the Fe-Mn(1:1) oxide, the Fe-Mn(1:1)-Used oxide and the Fe-Mn(1:1)-regenerated 

oxide catalysts. (d) Comparison of the surface molar ratios of Oads/Olatt on the surface 

of the respective catalysts.
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Fig. S9. (a) In situ DRIFT spectra of formaldehyde oxidation as a function of reaction 

time in N2 atmosphere at 25 °C over the Fe-Mn(1:1) oxide catalyst. (Experimental 

conditions: 5 mg catalyst; HCHO concentration: 12 ppm, balanced by N2, RH=22%, 

GHSV = 300 L g-1 h-1). (b) In situ DRIFT spectra of formaldehyde oxidation as a function 

of reaction time without water at 25 °C over the Fe-Mn(1:1) oxide catalysts. 

(Experimental conditions: 5 mg catalyst; HCHO concentration: 12 ppm, released by 

paraformaldehyde and balanced by air, RH=0%, GHSV = 300 L g-1 h-1).
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Fig. S10. In situ DRIFT spectra of formaldehyde oxidation as a function of the reaction 

temperature over the Fe-Mn(1:1) oxide catalyst.
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Table S3 IR bands of the adsorption of HCHO on the Fe-Mn(1:1) mixed oxide catalyst.
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