Supporting Informations

Identifying Fe₃Mn₃O₈ Phase as the Superior Catalyst for Low-

Temperature Catalytic Oxidation of Formaldehyde in Air

Hanjie Xie^{a,b}, Xiaohan Chen^c, Chenchen Zhang^{a,b}, Ziqing Lao^a, Xiaojing Liu^{a,b}, Xiaona Xie^a, Raphael Semiat^{*a,b}, Ziyi Zhong^{*a}

^aChemical Engineering, Guangdong Technion Israel Institute of Technology (GTIIT), 241 Da Xue Road, Shantou, Guangdong 515063, China ^bTechnion-Israel Institute of Technology (IIT), Haifa, Israel 320000 ^cProvincial Key Laboratory of Marine Biotechnology, Institute of Marine Science, Shantou University, Shantou, Guangdong 515063, China

Experimental section

1. Preparation of catalysts

In detail, for the Fe-Mn oxide catalyst, stoichiometric quantities of 3.58 g Mn(NO₃)₂ and 8.08 g Fe(NO₃)₃•9H₂O were dissolved in 20 ml distilled water under vigorous stirring at 30 °C to form a solution with the desired molar ratio of Fe/Mn (1:1). Then, an appropriate amount of citric acid was added to obtain a solution with a molar ratio of citric acid per metal ion of 1.2. After 15 min of constant stirring, the above solution was gradually heated to 80 °C and continuously stirred for 4 h at this temperature to form a gel. The resulting gel was dried at 100 °C for 12 h, and then calcined at 500 °C for 4 h. This preparation method is easy to be scaled up. Ca. 100 g catalyst could be prepared one time using a container with a volume of 2000 ml in the laboratory. Similarly, the samples with various M/Mn ratios were synthesized. In detail, for the Co-Mn oxide catalyst, stoichiometric quantities of 3.58 g Mn(NO₃)₂ and 5.82 g Ni(NO₃)₃•6H₂O were used with the desired molar ratio of Co/Mn (1:1). For the Ni-Mn oxide catalyst, stoichiometric quantities of 3.58 g Mn(NO₃)₂ and 5.82 g Ni(NO₃)₃•6H₂O were used with the desired molar ratio of Ni/Mn (1:1).

2. Characterization

H₂-TPR was performed on an AutoChem II 2920 desorption apparatus. The catalyst (0.100 g) was pretreated in He (30 mL min⁻¹) at 250 °C for 1 h and then cooled to 80 °C in He. The sample was then exposed to 10 vol% H₂/Ar (30 mL min⁻¹), and the temperature was raised to 900 °C at a rate of 10 °C min⁻¹. The oxygen storage capacities of the catalysts were evaluated by the O₂ temperature-programmed desorption (O₂-TPD) method on an AMI-300 desorption apparatus. In brief, 50 mg of catalyst was pretreated under an O₂ atmosphere (30 cm³/min) at 120 °C for 60 min and cooled down to 30 °C at the same condition. Then, the pretreated catalyst was heated from 30 to 900 °C in a He flow (30 cm³/min) at a heating rate of 10 °C/min.²⁸ Electron paramagnetic resonance (EPR) analyses were performed on an EMXplus spectrometer (Bruker, Germany). Before the test, 3 mg of sample was dispersed in 6

ml of methanol, and the dispersion was added into methanol with 60 mM of DMPO. The sample was tested after shaking up. The operating parameters were as follows: modulation frequency: 100.00 KHz; modulation amplitude: 2.00 G; sweep width: 100.00 G; conversion: 40.000 ms; time constant: 40.960 ms; microwave power: 20.00 mW; microwave frequency: 9.84 GHz; and sweep time: 60.70 s.

Binary Oxides Catalysts	Specific activity (mg _{HCHO} g ⁻¹ _{cat} h ⁻¹) at 25 °C			
Fe-Mn(3:1)	8.90			
Fe-Mn(1:1)	58.0			
Fe-Mn(1:3)	37.0			
Ni-Mn(3:1)	12.0			
Ni-Mn(1:1)	23.0			
Ni-Mn(1:3)	33.0			
Co-Mn(3:1)	25.0			
Co-Mn(1:1)	26.0			
Co-Mn(1:3)	33.0			

Co-Mn) in catalytic oxidation of formaldehyde at 25 °C. (Conditions: Catalyst: 0.100 g, HCHO: 115 ppm, GHSV: 300 L g⁻¹ h⁻¹).

Table S2. Comparison of HCHO catalytic oxidation performance of Fe-Mn(1:1) with other catalysts reported in literature.

Catalysts	HCHO concentrations	GHSV	Conversion	T (°C)	Ref.
K-δ-MnO ₂	10.0 ppm	130 L g ⁻¹ h ⁻¹	100%	25	1
Pd/TiO ₂	50.0 ppm	24.0 L g ⁻¹ h ⁻¹	100%	30	2
3D-MnO ₂	100 ppm	180 L g ⁻¹ h ⁻¹	100%	90	3
Fe-Mn(1:1)	115 ppm	300 L g ⁻¹ h ⁻¹	100%	25	This work
Pt/MnO ₂ - Ni(OH) ₂	200 ppm	Static state	90%	25	4

Fig. S1. Formaldehyde removal as a function of reaction time at different temperatures

over the Fe-Mn (1:1) mixed oxide catalyst at a GSHV of 300 L g⁻¹ h⁻¹, (a) 25 °C, (b) 35 °C, (c) 45 °C, and (d) 55 °C.

Fig. S2. Effect of GHSV on the catalytic performance of the Fe-Mn (1:1) oxide catalyst (catalyst: 25-100 mg, and HCHO concentration: 115 ppm, Temperature: 25 °C).

Fig. S3. (a) Effect of relative humidity (RH) on the activity of the Fe-Mn (1:1) oxide catalyst (catalyst: 50 mg, and HCHO concentration: 115 ppm, GHSV = 600 L g⁻¹ h⁻¹, Temperature: 25-100 °C). (b) Effect of relative humidity (RH) on the stability of the Fe-Mn (1:1) oxide catalyst (catalyst: 100 mg, Temperature: 25 °C, GHSV = 300 L g⁻¹ h⁻¹, and HCHO concentration: 115 ppm).

Fig. S4. The EDS-mapping of the Fe-Mn (1:1) oxide catalyst.

Fig. S5. XRD patterns of the Fe-Mn (1:1) ($Fe_3Mn_3O_8$) and the mechanically mixed Fe-Mn (1:1) oxide catalysts.

Fig. S6. Nitrogen adsorption-desorption isotherms of the Fe-Mn oxide catalysts with different Mn/Fe ratios.

g. S7. O_2 -TPD profile of Fe_2O_3 .

Fi

Fig. S8. (a) XPS spectra of Mn 2p for the fresh, used the regenerated Fe-Mn(1:1)regenerated oxide catalysts. (b) Comparison of the surface molar ratios of Mn^{3+}/Mn , $(Mn^{3+} + Mn^{4+})/Mn$ on the surface of the respective catalysts. (c) XPS spectra of O 1s for the Fe-Mn(1:1) oxide, the Fe-Mn(1:1)-Used oxide and the Fe-Mn(1:1)-regenerated oxide catalysts. (d) Comparison of the surface molar ratios of O_{ads}/O_{latt} on the surface of the respective catalysts.

Fig. S9. (a) In situ DRIFT spectra of formaldehyde oxidation as a function of reaction time in N₂ atmosphere at 25 °C over the Fe-Mn(1:1) oxide catalyst. (Experimental conditions: 5 mg catalyst; HCHO concentration: 12 ppm, balanced by N₂, RH=22%, GHSV = 300 L g⁻¹ h⁻¹). (b) In situ DRIFT spectra of formaldehyde oxidation as a function of reaction time without water at 25 °C over the Fe-Mn(1:1) oxide catalysts. (Experimental conditions: 5 mg catalyst; HCHO concentration: 12 ppm, released by paraformaldehyde and balanced by air, RH=0%, GHSV = 300 L g⁻¹ h⁻¹).

Fig. S10. In situ DRIFT spectra of formaldehyde oxidation as a function of the reaction temperature over the Fe-Mn(1:1) oxide catalyst.

IR band wavenumber (cm ⁻¹)									
-OH	С-Н		HCOO-		DOM		Carbonates		
υ(OH)	v _{as} (CH)	v _s (CH)	δ(CH)	v _{as} (OCO)	υ _s (OCO)	δ(CH ₂)	v(CO)	v(CO ₃)	
~3700	~2856	~2925	~2958	~1564	~1519	~1456	~1047	~1386	
~3369								~1348	
Refer. 5-7	Refer. 5-7		Refer. 5-7		Refer. 5-7		Refer. 5-7		

Table S3 IR bands of the adsorption of HCHO on the Fe-Mn(1:1) mixed oxide catalyst.

Supporting References

- 1 R. Fang, Q. Feng, H. Huang, J. Ji, M. He, Y. Zhan, B. Liu, D. Y. C. Leung, Effect of K⁺ ions on efficient room-temperature degradation of formaldehyde over MnO₂ catalysts. *Catal. Today*, 2019, **327**, 154-160.
- 2 X. Wang, X. Zou, Z. Rui, Y. Wang, H. Ji, Highly dispersed and active Pd nanoparticles over titania support through engineering oxygen vacancies and their anchoring effect. *AIChEJ*, 2020, **66**, 16288.
- 3 S. Rong, P. Zhang, Y. Yang, L. Zhu, J. Wang, and F. Liu, MnO₂ Framework for Instantaneous Mineralization of Carcinogenic Airborne Formaldehyde at Room Temperature. ACS Catal. 2017, 7, 1057-1067.
- S. Huang, B. Cheng, J. Yu, and C. Jiang, Hierarchical Pt/MnO₂-Ni(OH)₂ Hybrid Nanoflakes with Enhanced Room-Temperature Formaldehyde Oxidation Activity. ACS Sustainable Chem. Eng. 2018, 6, 12481-12488.
- Z. Dai, J. Zhu, J. Yan, J. Su, Y. Gao, X. Zhang, Q. Ke, G. Parsons, An Advanced Dual-Function MnO₂-Fabric Air Filter Combining Catalytic Oxidation of Formaldehyde and High-Efficiency Fine Particulate Matter Removal, *Adv. Funct. Mater.*, 2020, 30, 2001488.
- 6 Z. Yan, Z. Xu, J. Yu, Jaroniec, M. Enhanced formaldehyde oxidation on CeO₂/AlOOH-supported Pt catalyst at room temperature, *Appl. Catal. B: Environ.*, 2016, **199**, 458-465.
- J. Fan, X. Niu, W. Teng, P. Zhang, W. Zhang, D. Zhao, Highly dispersed Fe-Ce Mixed
 Oxide Catalysts Confined in Mesochannels toward Low-Temperature Oxidation
 Formaldehyde. J. Mater. Chem. A, 2020, 8, 17174-17184.