Electronic Supplementary Material (ESI) for Environmental Science: Nano. This journal is © The Royal Society of Chemistry 2021

Reusable Piezo-catalytic Water Disinfection Activity of CVD Grown WS2 Few-layer on

Sapphire Substrate

Deepa Thakur¹, Moolchand Sharma¹, Viswanath Balakrishnan^{1*} and Rahul Vaish^{1*}

School of Engineering, Indian Institute of Technology Mandi, Mandi, Himachal Pradesh,

India 175075

*Corresponding author E-mail address: viswa@iitmandi.ac.in, rahul@iitmandi.ac.in

¹Both authors contributed equally.

Figure S1: (a) Optical image of large area growth of few layer WS₂ is shown. (b) and (c)

FESEM image to show coalescence and multilayer formation.

Figure S2: Optical images shows recovery of catalyst after three piezocatalytic cycles.

Figure S3: Surface analysis of catalyst after five cycles. (a) XPS Survey scan. Individual high-resolution (b) C scan, (c) W scan, (d) S scan, (e) O scan and (f) Al scan.

Figure S4: XRD analysis of WS₂ grown over sapphire substrate.

A	comparative	summary	of	piezocatalysis	by	other	researchers	is	presented	in	table
sl	hown below:										

Sr.	Materi	Applicat	Reaction	sonicator	Dye/pollutan	Catalyst	Ref.
No.	als	ion	rate	conditions	t	amount	
1	Single	dye	99.7% in	300 W	MB 40 mg/L	10 mg	1
	and few	degradati	60 min				
	layer	on					
	WS_2						

2	MoS ₂	H ₂ evolut	29.1 μ	110 W and	RB (100 mL,	20 mg	2
	Few	ion	$mol g^{-1} h^{-1}$	40 kHz	10 mg/L)	catalyst	
	layer	Dye	96% in 60			for H ₂	
		degradati	min			evolution	
		on				and 10	
	WS ₂	H ₂ evolut	15.4 μ			mg for	
	Few	ion	$\operatorname{mol} \operatorname{g}^{-1} \operatorname{h}^{-1}$			RB dye	
	layer	Dye	65.7% in 60			degradati	
		degradati	min			on	
		on					
	WSe ₂	H ₂ evolut	11.3 μ				
	Few	ion	$mol g^{-1} h^{-1}$				
	layer	Dye	43.5% in 60				
		degradati	min				
		on					
3	PDMS	dye	0.13 (ppms ⁻¹)	300 W,	RB	300 mg	3
	embedd	degradati	degradation	40 kHz	(10 mg/L)		
	ed	on and	rate:		And E coli		
	monola	antibacte	~6624 ppm L		$(2 \times 10^8 \text{ bacte})$		
	yer	rial	mole ⁻¹ s ⁻¹		ria/mL)		
	WS_2		Antibacterial:				
	nanoflo		99.99% in 60				
	wers		min.				
4	Со	dye	73.6% MB in	40 kHz,	MB	10 mg	4
	doped	degradati	25 min	100W	(30 mg/L)		

	MoS _{2,}	on					
	3.2 nm						
	thick						
5	MoSa	duo	00 % in 20	250 W 40	DhD	10 mg	5
5	MOSe ₂	dye	90 % 111 50	230 W, 40	KIID	10 mg	
	NFs	degradati	sec	kHz	$[1 \times 10^{-5} \text{ m}]$		
	Single	on	Kobs:0.3				
	and few		ppm s ⁻¹				
	layer		Degradation				
			rate:				
			69,889 ppm L				
			$mole^{-1} s^{-1}$				
6	MoS ₂	dye	40336 ppm L	250 W, 40	RhB		6
	Nano	degradati	$mol^{-1} s^{-1}$	kHz	$[10 \text{ mg } \text{L}^{-1}]$		
	Flowers	on	(93% in 60 s)				
7	Co-	dye	99.2% in 60 s		MB	10 mg	7
	doped	degradati			$[5 \text{ mg } \text{L}^{-1}]$		
	MoS_2	on					
	MoS ₂		36.5% in 60 s				
8	glutathi	Piezo-	H ₂ : 1250	280 W	200 mL	0.05 g	8
	one	photo	μ mol g ⁻¹ h ⁻¹		water		
	modifie	Water					
	d	splitting					
	acidize						
	d-MoS ₂						
9	Au-	Piezo-	99.999% in	Visible	E.Coli	2 mg	9

	MoS ₂	photo	15 min	light and	$(2 \times 10^6 \text{ CFU})$		
		Bacterial	(photo+piezo)	mechanical	/mL)		
		Sterilizat	,	vibration			
		ion	45 min for				
			piezo,				
			60 min for				
			photo				
10	Fe@3D	Levoflox	99.6% in 12	40 kHz;	Levofloxacin	20 mg	10
	$-WS_2$	acin and	min	100 W	(25 mg/L)		
		Dye	98% within		Rhodamine	0.01 g	
		degradati	30 s		(1000 ppm,		
		on			20 mL)		
	3D-		63% in 12		Levofloxacin	20 mg	
	WS_2		min		(25 mg/L)		

The 2D TMDCs based catalyst shows high efficiency towards piezocatalytic dye degradation and other application like water splitting, antibacterial activity and H₂ evolution. But uptill now mostly catalyst in powder or solution form has been used. The use of thin-film catalyst is very rare. Thin film based catalyst have advantage of easy/good recovery and recyclability with negligible loss of catalyst. Powder or solution-based catalyst has difficult process for catalyst recovery and suffers catalyst loss. Hence recyclability which is one of the very important factors for practical industry-based requirement, becomes difficult. Hence the developed large area thin film based WS₂ grown on sapphire substrate with piezo catalyst behaviour opens up platform for developing reusable, low cost catalyst for dye degradation. There are very few reports on the use of thin-film based catalyst. The existing literature survey direct us towards the future directions which can be integration of WS_2 with other material which can increase its activity multiple times.

References:

- 1 R. Cao, R. Wu, D. Zhang and S. Xu, *Appl. Surf. Sci.*, 2021, **553**, 149557.
- 2 S. Li, Z. Zhao, D. Yu, J. Z. Zhao, Y. Su, Y. Liu, Y. Lin, W. Liu, H. Xu and Z. Zhang, *Nano Energy*, 2019, **66**, 104083.
- 3 S. Masimukku, Y. Hu, Z. Lin, S. Chan and T. Chou, *Nano Energy*, 2018, 46, 338–346.
- W. I. N. T. Yein, W. Qun, J. Jiahuang, L. I. Yang and W. U. Xiaohong, *Chem. Res. Chinese Univ.*, 2019, 35, 892–900.
- 5 M. Wu, J. Lee, Y. J. Chung, M. Srinivaas and J. Wu, *Nano Energy*, 2017, **40**, 369–375.
- J. M. Wu, W. E. Chang, Y. T. Chang and C. Chang, *Adv. Mater.*, 2016, 28, 3718–3725.
- 7 W. T. Yein, Q. Wang, Y. Li and X. Wu, *Catal. Commun.*, 2019, **125**, 61–65.
- 8 Y. Sua, L. Zhang, W. Wang, X. Li, Y. Zhanga and D. Shao, *J. Mater. Chem. A*, 2018,
 6, 11909–11915.
- 9 T. Chou, S. Chan, Y. Lin, P. Yang, C. Liu, Y. Lin, J.-M. Wu, J. Lee and Z. Lin, *Nano Energy*, 2019, 57, 14–21.
- F. Meng, W. Ma, C. Duan, X. Liu, Z. Chen, M. Wang, J. Gao and Z. Zhang, *Appl. Catal. B Environ.*, 2019, 252, 187–197.