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Fig. S1 FE-SEM images of (A) Sn@BS and Sn@NPC at (B) 500℃, (C) 600℃, (D) 

800℃.

Fig. S1 showed the microscopic morphology of the Sn@BS precursor at different 

calcination temperatures. The morphology of the bacterial carrier was well maintained 

in the range of 700°C (Fig. 1D). When the temperature reached 800°C, the morphology 

was completely broken.
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Fig. S2 (A) LSV curves and (B) Faradaic efficiencies of Sn@NPC at different 

calcination temperatures.

To make sure the best performance at different temperatures, the current density 

and Faraday efficiency of formate were tested. The Faradaic efficiency of formate 

increased with the increase of temperature. However, when the temperature reached 

800°C, the Faradaic efficiency decreased significantly, which could be due to its 

morphological fragmentation. 
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Fig. S3 (A) LSV curves and (B) Faradaic efficiencies of HCOOH for Sn@NPC-A, 

Sn@NPC-B, Sn@NPC and NPC measured in CO2 saturated 0.1 M KHCO3 solution.

The performance of CO2RR might be affected by the tin loading. From Fig. S3, the 

performance of CO2RR-to-HCOOH gradually increased with the increasing of tin 

content. However, an optimal CO2RR performance was obtained for Sn@NPC due to 

the adsorption saturation of bacteria. Therefore, all subsequent tests were mainly carried 

out on Sn@NPC composites.
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Fig. S4 (A) XRD pattern and (B) FESEM image of Sn particles.
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Fig. S5 (A) XPS survey spectrum of Sn@NPC. High resolution XPS spectrum of (B) 

O 1s and (C) C 1s collected from Sn@NPC composites.
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Fig. S6 (A) Calibration curve for quantifying HCOOH concentration by Nuclear 

magnetic resonance (1H-NMR) with phenol as the internal standard; NMR results after 

CO2RR for Sn@NPC in (B) CO2-saturated condition and (C) Ar-saturated condition; 

(D) NMR result after CO2RR for NPC in CO2-saturated condition.
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Fig. S7 ECSA-normalized partial current densities of HCOOH vs. applied potentials.
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Fig. S8 TOF curves of Sn@NPC and Sn particles at different applied potential.
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Fig. S9 (A) XRD patterns for Sn@NPC before and after 105 h stability measurement; 

(B) FESEM image of Sn@NPC after stability measurement.
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Fig. S10 LSV curves for Sn@NPC before and after stability test under CO2-saturated 

0.1 M KHCO3 aqueous solution. 
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Fig. S11 Stability measurement of Sn particles at -1.0 V vs. RHE in CO2-saturated 0.1 

M KHCO3 aqueous solution.
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Fig. S12 (A) CV curves measured in a non-Faradaic region at various scan rates for 

carbon cloth; (B) Charging current density differences plotted against scan rates.



14

   

Fig. S13 CV curves measured in a non-Faradaic region at various scan rates for (A) 

Sn@NPC, (B) NPC and (C) Sn particles.
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Fig. S14 The proposed equivalent circuit based on EIS tests.

Table S1 The fitted results of EIS data using the equivalent circuit in Fig. 4B.

Electrode Rs (Ω) Rct (Ω) Rf (Ω)

NPC 6.85 101.56 84.57

Sn particles 6.53 47.48 58.18

Sn@NPC 6.59 36.04 51.44
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Fig. S15 DFT calculated CO2 adsorption models of graphene, N/P-doped graphene and 

their corresponding adsorption energies. 
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Fig. S16 DFT calculated CO2 adsorption models of Sn(101), Sn(200) with/without 

their surfaces initially covered by four or three physiosorbed CO2 molecules.
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Fig. S17 DFT calculated *COOH adsorption models of Sn(101), Sn(200) with/without 

their surfaces initially covered by four or three physiosorbed CO2 molecules.
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Fig. S18 DFT calculated *CO adsorption models of Sn(101), Sn(200) with/without their 

surfaces initially covered by four or three physiosorbed CO2 molecules.
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Fig. S19 DFT calculated *OCHO adsorption models of Sn(101), Sn(200) with/without 

their surfaces initially covered by four or three physiosorbed CO2 molecules. 



21

 

 

Fig. S20 DFT calculated *HCOOH adsorption models of Sn(101), Sn(200) with/without 

their surfaces initially covered by four or three physiosorbed CO2 molecules.



22

Table S2 The ICP- OES results of electroplating sludge extracting solution.

Element Sn Fe Si Na

Weight % 58.75 19.14 12.97 9.08

Table S3 The concentrations of tin for the different samples were analyzed via ICP-

OES. 

Name Mass sludge (g) C Sn (ppm) Sn (wt %) 

Sn@NPC-A 0.3 1763 21.47

Sn@NPC-B 0.4 2350 31.11

Sn@NPC 0.5 2937 31.43
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Table S4 Comparison of the electrocatalytic performance for CO2RR to formate of 

recently reported Sn-based electrocatalysts.

Catalysts
Electrolyte

(KHCO3)

E (V 

vs. 

RHE)

JHCOOH

(mA/cm2)

FEMax

(%)

Stability 

(h)
Ref.

Wavy SnO2 0.5 M -1.0 22 87.4 18 1

Porous SnO2

nanosheets 0.5 M -0.7 2.31* 92.4 10 2

SnO2 porous
nanowires 0.1 M -1.0 8* ~80 15 3

Mesoporous
SnO2 nanosheets 0.5 M -1.3 7.47* 90 12 4

Sn/SnO/SnO2

nanosheets 0.5 M -0.9 17.1 89.6 10 5

Porous Sn foam 0.1 M -0.9 ~7.65* 95.6 55 6

SnS2

monolayers 0.1 M -0.8 — 94 80 7

Sn/Reduced
Graphene Oxide 0.1 M -1.02* ~24* 98 — 8

H-SnS2
nanosheets 

0.1 M -0.9 ~18.6 87 — 9

SnSe2@CC 0.1 M -0.76 12 88.4 10 10

Sn quantum
sheets 0.1 M -1.1* 18.69* 89 50 11

Sn@NPC 0.1 M -1.05 8.05 87.93 105
This

work

*: The values were obtained from literature estimation.
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