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Figure S1. Photographs of the photocatalysis equipment and the visible light filter.



Figure S2. SEM image of (a1 and a2) PBA, (b1 and b2) PG, (c1, c2) PPG, (d1 and d2) PG-350, 

and (e1, e2) PPG-350 at different magnification.



Figure S3. (a and b) TEM image of PG-350 at different magnification.

Figure S4. Macroscopic photographs of the composites. 



Figure S5. TGA curves of PPy and PyG in air with a heating rate of 10℃/min.

Figure S6. FTIR spectrum of PPy and PyG-350. For the spectrum of PPy, several typical peaks have 

emerged, including the peak at 791 cm-1 stands for the C-H out-of-plane deformation vibration of 

the polymer ring, the peak at 1184 cm-1 represents the stretching vibration of C-N bond, two peaks 

at 1304 cm-1 and 1045 cm-1 stands for C-H in-plane deformation vibration, and other two peaks at 

1553 cm-1 and 1467 cm-1 represents antisymmetric and symmetric ring stretching modes. [1~3] 

While, the peak at 1635 cm−1 in the spectrum of PyG-350 is assigned to the C=C stretching 

vibration of the graphitic domains[1], and the characteristic peaks for PPy almost completely 

diminished, demonstrating its carbonization [4, 5].



Figure S7. Raman spectra of PG, PPG, PG-350, and PPG-350.

Figure S8. EIS plot of PBA and PG.



Figure S9. Degradation of TC in vis/PMS/PyG-350 system. (TC = 20 ppm, Catalyst = 50 mg·L-1, 

PMS = 200 mg·L-1, pH= neutral)

Figure S10. Metal ion leaching of PPG-350 under different pH conditions.



Figure S11. TEM images of the catalyst after working under (a) pH = 1 and (b) pH = 13.

Figure S12. Degradation performance of PPG-350 under different pH (including 1, 3, 9, and 13) 

and various conditions (light, PMS, and light-PMS) (TC = 20 ppm, Catalyst = 50 mg·L-1, PMS = 

200 mg·L-1).



Figure S13. The degradation rate constant of TC by PPG-350 under different pH (including 1, 3, 9, 

and 13) and various conditions (light, PMS, and light-PMS).

Figure S14. Relative concentration variation of different active species under different pH.



Figure S15. Degradation of TC in real water systems. (TC = 20 ppm, Catalyst = 50 mg·L-1, PMS = 

200 mg·L-1).

Figure S16. Degradation of low concentration of TC through Vis/PMS/PPG-350 system. (TC = 1 

μg/L, Catalyst = 50 mg·L-1, PMS = 200 mg·L-1).



Figure S17. FTIR spectrum of PPG-350 before and after use.

Figure S18. XRD spectrum of PPG-350 before and after use.

Figure S19. SEM image of PPG-350 before (a and b) and after use (c and d).



Figure S20. Metal leaching of PG-350 and PPG-350 after the catalytic experiment.

Figure S21. UV-vis spectra evolution of TC during the degradation test. (TC = 20 ppm, Catalyst = 

50 mg·L-1, PMS = 200 mg·L-1, pH= neutral)



Figure S22. TOC change during the TC degradation via vis/PMS/PPG-350 system. (TC = 20 ppm, 

Catalyst = 50 mg·L-1, PMS = 200 mg·L-1, pH= neutral)



Figure S23. LC-MS results of the solution taken at 2 min and 15 min during the reaction, and the 

blank sample, respectively.



Table S1. Proposed structure of the degradation intermediates.
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Figure S24. Possible degradation pathway of TC in vis/PMS/PPG-350 system.

Figure S25. (a) Radical quenching test on Vis/PPG-350 system and corresponding (b) rate 

constant of various catalysts (TC = 20 ppm, Catalyst = 50 mg·L-1, pH= neutral).



Figure S26. Degradation of TC in different solvent conditions. (TC = 20 ppm, Catalyst = 50 mg·L-

1, PMS = 200 mg·L-1, pH= neutral)

Figur S27. ESR signal of TEMP-1O2 obtained in D2O and H2O.



Figure S28. H2O2 concentration in different systems. The H2O2 concentration in both Vis/PPG-350 

and Vis/PMS/PPG-350 systems by using titanium oxalate potassium as the indicator [6-7]. 

Unfortunately, no sign of H2O2 was observed. While we then have monitored the generation of H2O2 

through the reaction between PMS and H2O (Equation 1). As shown below, with 2g/L of PMS in 

water, about 21.5 μmol·L-1 of H2O2 has generated in 5 min, then the concentration of H2O2 starts to 

decrease, which is due to its decomposition (Equation 2 ~ 4). Herein, we think that it is caused by 

the fast reaction kinetics between iron/cobalt ions and H2O2 (Equation 5 ~ 6), and makes it rather 

difficult to track the trace of H2O2 in this system.

HSO5
- + H2O → H2O2 + HSO4

- (1)

H2O2 + OH· → H2O + HO2
- (2)

H2O2 → 2·OH (3)

·OH + H2O2 → HO2· + H2O (4)

Fe2+/Fe(II)/Co2+/Co(II) + H2O2 → Fe3+/Fe(III)/Co3+/Co(III) + ·OH + OH- (5)

Fe3+/Fe(III)/Co3+/Co(III) + H2O2 → Fe2+/Fe(II)/Co2+/Co(II) + ·OOH + H+ (6)
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