Electronic Supplementary Material (ESI) for Environmental Science: Nano. This journal is © The Royal Society of Chemistry 2022

Supporting Information

A Theoretical Perspective of the Structure and Thermodynamics of Secondary

Organic Aerosols from Toluene: Molecular Hierarchical Synergistic Effects

System	N _{C7H6O2}	N _{C7H6O}	N _{C3H4O3}	N _{H2SO4}	N _{H2O}	N _{N2}	N _{O2}	N _{H2SO4/H2O}	Т
#01	50	205	218	46	114	900	240	0.4	
#02	50	205	218	37	123	900	240	0.3	
#03	50	205	218	27	133	900	240	0.2	
#04	50	205	218	15	145	900	240	0.1	
#05	50	205	0	40	120	900	240	0.33	
#06	0	205	218	40	120	900	240	0.33	298K
#07	50	0	218	40	120	900	240	0.33	
#08	50	205	218	40	120	900	240	0.33	
#09	39	196	238	40	120	900	240	0.33	
#10	33	200	240	40	120	900	240	0.33	
#11	25	233	215	40	120	900	240	0.33	
#12	50	205	218	40	120	900	240	0.33	273K
#13	50	205	218	40	120	900	240	0.33	283K
#14	50	205	218	40	120	900	240	0.33	293K
#15	50	205	218	40	120	900	240	0.33	303K
#16	50	205	218	40	120	900	240	0.33	313K
#17	50	205	218	40	120	900	240	0.33	323K

 Table S1 Compositions of the mimicked systems.

The molar ratios of organics, including benzaldehyde, benzoic acid, and pyruvic acid,

are provided from the mimicked chamber experiments reported by Qi et al.[S1].

•

Table S2. Gibbs free energy (G) of single molecules and dimers calculated at M06-

Dimer	G (Hartree)
$C_7H_6O_2$	-420.710
C_7H_6O	-345.461
$C_3H_4O_3$	-342.353
H ₂ O	-700.277
H_2SO_4	-76.423
$H_2SO_4-H_2O$	-776.705
H_2SO_4 - $C_3H_4O_3$	-1042.642
H_2SO_4 - $C_7H_6O_2$	-1120.992
$H_2SO_4-C_7H_6O$	-1045.743
$H_2O-C_3H_4O_3$	-418.778
$H_2O-C_7H_6O_2$	-497.129
$H_2O-C_7H_6O$	-421.878
$C_3H_4O_3$ - $C_7H_6O_2$	-763.063
C ₃ H ₄ O ₃ -C ₇ H ₆ O	-687.815
$C_7H_6O_2$ - C_7H_6O	-766.168

 Table S3. Molecular compositions of mimicked systems for multicomponent SOA

System	Ν	Ν	Ν	N	Ν	Ν	Ν	Ν	Ν	E	Life
	C7H6O2	C7H6O	C3H4O3	H2SO4	H2O	N2	O2	H2SO4/H2O	HBs	(KJ/mol)	(ps)
#01	0	0	500	40	120	900	240	0.33	734	-215.37	235.20
#02	0	50	450	40	120	900	240	0.33	684	-197.42	233.66
#03	0	100	400	40	120	900	240	0.33	636	-179.23	207.33
#04	0	150	350	40	120	900	240	0.33	595	-161.16	194.84
#05	0	200	300	40	120	900	240	0.33	550	-143.16	203.61
#06	0	250	250	40	120	900	240	0.33	504	-125.11	172.39
#07	0	300	200	40	120	900	240	0.33	452	-104.89	132.47
#08	0	350	150	40	120	900	240	0.33	413	-87.78	183.44
#09	0	400	100	40	120	900	240	0.33	376	-70.35	167.67
#10	0	450	50	40	120	900	240	0.33	331	-54.30	226.00
#11	0	500	0	40	120	900	240	0.33	281	-35.23	151.82
#12	50	0	450	40	120	900	240	0.33	723	-200.46	212.02
#13	50	50	400	40	120	900	240	0.33	686	-182.58	207.30
#14	50	100	350	40	120	900	240	0.33	636	-163.68	179.88
#15	50	150	300	40	120	900	240	0.33	579	-145.69	182.34
#16	50	200	250	40	120	900	240	0.33	554	-128.48	191.83
#17	50	250	200	40	120	900	240	0.33	501	-109.64	176.68
#18	50	300	150	40	120	900	240	0.33	461	-92.93	207.26
#19	50	350	100	40	120	900	240	0.33	402	-73.69	172.28
#20	50	400	50	40	120	900	240	0.33	366	-57.28	171.18
#21	50	450	0	40	120	900	240	0.33	314	-37.33	158.47
#22	100	0	400	40	120	900	240	0.33	721	-186.48	216.53
#23	100	50	350	40	120	900	240	0.33	670	-167.19	221.45
#24	100	100	300	40	120	900	240	0.33	628	-148.83	181.22
#25	100	150	250	40	120	900	240	0.33	582	-131.25	182.78
#26	100	200	200	40	120	900	240	0.33	536	-112.80	182.57
#27	100	250	150	40	120	900	240	0.33	497	-96.81	202.83
#28	100	300	100	40	120	900	240	0.33	445	-76.10	152.24
#29	100	350	50	40	120	900	240	0.33	400	-58.45	176.27
#30	100	400	0	40	120	900	240	0.33	350	-40.81	138.17
#31	150	0	350	40	120	900	240	0.33	706	-170.86	189.43
#32	150	50	300	40	120	900	240	0.33	657	-152.47	188.44
#33	150	100	250	40	120	900	240	0.33	632	-135.13	208.10
#34	150	150	200	40	120	900	240	0.33	587	-117.14	183.50
#35	150	200	150	40	120	900	240	0.33	548	-100.09	198.65

phase diagram.

#36	150	250	100	40	120	900	240	0.33	482	-82.60	196.54
#37	150	300	50	40	120	900	240	0.33	435	-62.15	146.22
#38	150	350	0	40	120	900	240	0.33	395	-45.12	181.54
#39	200	0	300	40	120	900	240	0.33	701	-156.11	194.39
#40	200	50	250	40	120	900	240	0.33	648	-137.63	189.05
#41	200	100	200	40	120	900	240	0.33	631	-121.24	211.94
#42	200	150	150	40	120	900	240	0.33	566	-102.03	179.92
#43	200	200	100	40	120	900	240	0.33	514	-83.09	173.54
#44	200	250	50	40	120	900	240	0.33	472	-66.18	175.21
#45	200	300	0	40	120	900	240	0.33	433	-48.82	182.01
#46	250	0	250	40	120	900	240	0.33	682	-141.17	169.94
#47	250	50	200	40	120	900	240	0.33	648	-123.63	196.68
#48	250	100	150	40	120	900	240	0.33	600	-104.76	174.23
#49	250	150	100	40	120	900	240	0.33	569	-87.31	191.19
#50	250	200	50	40	120	900	240	0.33	513	-69.98	194.36
#51	250	250	0	40	120	900	240	0.33	468	-52.39	196.89
#52	300	0	200	40	120	900	240	0.33	685	-125.76	194.20
#53	300	50	150	40	120	900	240	0.33	648	-109.38	209.28
#54	300	100	100	40	120	900	240	0.33	589	-90.53	195.58
#55	300	150	50	40	120	900	240	0.33	559	-74.17	200.42
#56	300	200	0	40	120	900	240	0.33	495	-54.15	171.09
#57	350	0	150	40	120	900	240	0.33	677	-112.33	200.10
#58	350	50	100	40	120	900	240	0.33	624	-93.57	181.46
#59	350	100	50	40	120	900	240	0.33	568	-76.10	174.30
#60	350	150	0	40	120	900	240	0.33	526	-57.76	185.08
#61	400	0	100	40	120	900	240	0.33	670	-98.77	199.34
#62	400	50	50	40	120	900	240	0.33	610	-78.72	165.56
#63	400	100	0	40	120	900	240	0.33	573	-61.06	185.04
#64	450	0	50	40	120	900	240	0.33	646	-82.62	194.36
#65	450	50	0	40	120	900	240	0.33	596	-64.30	193.05
#66	500	0	0	40	120	900	240	0.33	621	-66.93	197.81

Figure S1. Hierarchical architecture characterization: (A) radial distribution function and (B) coordination number for different organics.

Figure S2. The probability distributions of angle and distance for donor-acceptor.

Figure S3. Intermolecular interactions: (A) van der Waals and (B) electrostatic energy profiles. The organic ratio of benzoic acid/benzaldehyde/PA is 1.0: 6.1: 7.3.

Figure S4. The binding configurations of intra-molecules, which are calculated by the DFT method at the M062X Def2qzvp level.

Figure S5. Thermodynamics analysis of atmospheric aerosol with different organic compositions: (A) Van der Waals interaction energy, (B) electrostatic interaction energy, (C) total energy, (D) number of hydrogen bonds.

Figure S6. The Hierarchical internal structure of core-shelled nanoparticles under different organic ratios: (A) schematics of the phase diagram for a ternary organic mixture, The organic ratio of benzoic acid/benzaldehyde/PA is (B)1.0: 1.0: 8.0, (C) 1:8:2, (D) 3:3:4, (E) 7:1:2.

Figure S7. Migration and diffusion properties under different temperatures: (A1-A6) evolution of the probability of TSOA nanoparticles under different moving distances, and (B1-B6) van Hove function in terms of distance from the initial position under different simulation time. The simulated temperature increases from 273 to 323 K.

References

[S1] Wu, X. Cytotoxicity Studies on Main Components of Toluene Secondary Organic Aerosol. Master thesis, Harbin Institute of Technology, 2018.